Strengthening Mechanisms on (Cu–10Zn)100−x–x wt% Al2O3 (x = 0, 3, 6, 9 and 12) Nanocomposites Prepared by Mechanical Alloying and Vacuum Hot Pressing: Influence of Reinforcement Content

  • S. Sivasankaran
  • K. R. Ramkumar
  • Abdulaziz S. Alaboodi
Technical Paper


In the present research work, novel (Cu–10Zn)100−x–x wt% Al2O3 (x = 0, 3, 6, 9 and 12) nanocomposites were manufactured by mechanical alloying process and vacuum hot-pressing technique. As-sintered hot pressed samples exhibited crystallite size of 280, 230, 184, 152 and 122 nm with properties of nano-alumina particles which were examined by transmission electron microscopy. The influence of nano ceramic alumina content in Cu–10Zn nanocrystallite matrix on mechanical behavior was investigated by simple uniaxial compression test. The examination of compressive results revealed that (Cu–10Zn)94–6%Al2O3 nanocomposite was more work hardening than others. Several strengthening mechanisms, namely, particle strengthening, grain boundary strengthening, solid solution strengthening and dislocation–dislocation interactions were quantitatively estimated and correlated with measured compression strength results. It was found that the grain size and dispersion strengthenings contributed significantly to the total strength.


Cu–Zn alloy Mechanical alloying Characterization Mechanical properties Strengthening mechanisms 


  1. 1.
    Meyers M A, Mishra A, Benson D J, Prog Mater Sci 51 (2006) 427.CrossRefGoogle Scholar
  2. 2.
    Balogh L, Ungar T, Zhao Y, Zhu YT, Horita Z and Xu C, Acta Mater 56 (2008) 809CrossRefGoogle Scholar
  3. 3.
    Zhao Y H, Liao X Z, Horita Z, Langdon T G and Zhu Y T, Mater Sci Eng A 493 (1-2) (2008) 123CrossRefGoogle Scholar
  4. 4.
    Haiming Wen, Troy D. Topping, Dieter Isheim, David N. Seidman and Lavernia E J, Acta Materialia 61 (2013) 2769CrossRefGoogle Scholar
  5. 5.
    Li X C, Yang Y and Cheng X D, J. Mater. Sci. 39 (2004) 3211CrossRefGoogle Scholar
  6. 6.
    Sivasankaran S, Sivaprasad K, Narayanasamy R and Satyanarayana P V, Mater. Charact 62 (2011) 661CrossRefGoogle Scholar
  7. 7.
    Canakci A and Varol T, Powder Technol. 268 (2014) 72CrossRefGoogle Scholar
  8. 8.
    Razavi Hesabi Z, Simchi A, Seyed Reihani S M, Mater. Sci. Eng. A 428 (2006) 159CrossRefGoogle Scholar
  9. 9.
    Sivasankaran S, Sivaprasad K, Narayanasamy R and Vijay Kumar Iyer, J. Alloys Compd 491 (2010) 712CrossRefGoogle Scholar
  10. 10.
    Tang F, Hagiwara M and Schoenung J M, Scr. Mater. 53 (2005) 619CrossRefGoogle Scholar
  11. 11.
    Sivasankaran S, Sivaprasad K, Narayanasamy R and Saravanan M, Int. J. Adv. Manuf. Technol. 78 (1) (2015) 385CrossRefGoogle Scholar
  12. 12.
    Cheng-jin H U, Hong-ge Y A N, Ji-hua C H E N and Bin S U, Trans. Nonferrous Met. Soc. China 26(5) (2016) 1259CrossRefGoogle Scholar
  13. 13.
    Shang C, Axinte E, Sun J, Li X, Li P, Du J, Qiao P and Wang Y, Mater. Des. 117 (2017) 193.Google Scholar
  14. 14.
    Sivasankaran S, Sivaprasad K, Narayanasamy R and Vijay Kumar Iyer, J. Alloys Compd 507 (2010) 236CrossRefGoogle Scholar
  15. 15.
    Srivastav A K, Panindre A M and Murty B S, Trans Indian Inst Met 66(4) (2013) 409CrossRefGoogle Scholar
  16. 16.
    Mehrizi M Z, Shamanian M and Saidi A, Trans Indian Inst Met 67(5) (2014) 67(5) 709Google Scholar
  17. 17.
    Ramkumar K R, Ilangovan S, Sivasankaran S and Alaboodi A S, J. Alloys Compd 688 (2016) 518CrossRefGoogle Scholar
  18. 18.
    Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J and Ma E, Nat. Mater. 12 (2013) 344CrossRefGoogle Scholar
  19. 19.
    Zhao Y H, Liao X Z, Cheng S, Ma E and Zhu Y T, Adv. Mater. 18 (2006) 2280CrossRefGoogle Scholar
  20. 20.
    W.D. Callister Jr., Materials Science and Engineering: An Introduction, seventh ed., John Wiley and Sons, New York, 2007.Google Scholar
  21. 21.
    Humphreys F J, Acta Mater. 45 (1997) 5031CrossRefGoogle Scholar
  22. 22.
    Kang J L, Nash P, Li J J, Shi C S and Zhao N Q, Int. J. Nanotechnol 20 (2009) 1.Google Scholar
  23. 23.
    Cha S I, Kim K T, Arshad S N, Mo C B and Hong S H, Adv. Mater. 17 (2005) 1377CrossRefGoogle Scholar
  24. 24.
    Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, ISBN 0-471-65653-4Google Scholar
  25. 25.
    Lu L, Wang L B, Ding B Z and Lu K, J. Mater. Res. 15 (2000) 270CrossRefGoogle Scholar
  26. 26.
    Dixit M, Mishra R S and Sankaran K S, Mater. Sci. Eng., A 478 (2008) 163CrossRefGoogle Scholar
  27. 27.
    Li M, Zhai H, Huang Z, Liu X, Zhou Y, Li S and Li C, J. Alloys Compd 628 (2015) 186CrossRefGoogle Scholar
  28. 28.
    Cheng, Y. T and Cheng, C. M. (1998), Scaling approach to conical indentation in elastic-plastic solids with work hardening, J. Appl. Phys. 84(3) (1998) 1284CrossRefGoogle Scholar
  29. 29.
    Shanmugasundaram, T., Heilmaier M, Murty B S and Sarma V S, Metall. Mater.Trans. A., 40(12) (2009) 2798CrossRefGoogle Scholar
  30. 30.
    Hsu C J, Chang C Y, Kao P W, Ho N J and Chang C P, Acta Mater. 54 (2006) 5241CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, College of EngineeringQassim UniversityBuraydahKingdom of Saudi Arabia

Personalised recommendations