Advertisement

Microstructure and Mechanical Properties of Ti-15-3 Alloy Gas Tungsten Arc Welds Prepared Using CP-Titanium Filler

  • Ahmad Lutfi Anis
  • Mahesh Kumar Talari
  • Izzul Adli Mohd Arif
  • N. Kishore Babu
  • Muhammad Hussain Ismail
  • G. D. Janaki Ram
Technical Paper

Abstract

Strength and ductility of fusion zone of metastable β titanium alloy welds can be improved by choosing suitable fillers. This paper reports the effects of using CP-Ti filler on the microstructural and mechanical properties of Ti-15-3 weldments. Full penetration autogenous and CP-Ti filler welds were produced by pulsed gas tungsten arc welding. X-ray diffraction analysis revealed small amounts of α-Ti phase in the diffraction pattern obtained for welds prepared using CP-Ti filler. Transmission electron microscopy analysis showed presence of grain boundary and intragranular α in the fusion zone of the welds prepared using CP-Ti filler. The welds prepared with CP-Ti filler showed higher hardness, higher UTS and lower % strain compared to autogenous welds.

Keywords

Ti-15-3 GTAW Microstructure CP-Ti 

References

  1. 1.
    Boyer R R, Mater Sci Eng A 213 (1996) 103.CrossRefGoogle Scholar
  2. 2.
    Lutjering G, Mater Sci Eng A 243 (1998) 32.CrossRefGoogle Scholar
  3. 3.
    Baeslack III W A and Banas C M, Welding Research Supplement, July (1981) 121.Google Scholar
  4. 4.
    Balasubramanian M, Jayabalan V, and Balasubramanian V, Mater Lett 62 (2008) 1102.CrossRefGoogle Scholar
  5. 5.
    Hallum D L, and Baeslack III W A, WRC Bulletin 339 (1990) 326.Google Scholar
  6. 6.
    Balasubramanian M, Jayabalan V, and Balasubramanian V, J Manuf Sci Eng 131 (2009)Google Scholar
  7. 7.
    Chen J, and Pan C, Trans Nonferrous Met Soc China 21 (2011) 1506.CrossRefGoogle Scholar
  8. 8.
    Sundaresan S, Janaki Ram G D, and Reddy G M, Mater Sci Eng A 262 (1999) 88.CrossRefGoogle Scholar
  9. 9.
    Kishore Babu N, Sundara S G, Mythili R, and Saroja S, Mater Charact 58 (2007) 581.CrossRefGoogle Scholar
  10. 10.
    Balachandar K, Subramanya Sarma V, Pant B, and Phanikumar G, Metall Mater Trans A 40 (2009) 2685.CrossRefGoogle Scholar
  11. 11.
    Balasubramanian V, Jayabalan V, and Balasubramanian M, Mater Des 29 (2008) 1459.CrossRefGoogle Scholar
  12. 12.
    Yang M, Qi B, Cong B, Liu F, and Yang Z, Int J Adv Manuf Technol 68 (2013) 19.CrossRefGoogle Scholar
  13. 13.
    Greenfield M A, and Pierce C M, Welding Research Supplement, Nov (1973) 524.Google Scholar
  14. 14.
    Kuroda T, Horinouchi T, Iwagi O, Mori K, and Matsuda F, Trans JWRI 19 (1990) 79.Google Scholar
  15. 15.
    Barreda J L, Santamaria F, Azpiroz X, Irisarri A M, and Varona J M, Vacuum 62 (2001) 143.CrossRefGoogle Scholar
  16. 16.
    Irisarri A M, Barreda J L, and Azpiroz X, Vacuum 84 (2010) 143.Google Scholar
  17. 17.
    Shariff T, Cao X, Chromik R R, Wanjara P, Cuddy J, and Birur A, J Mater Sci 47 (2012) 866.CrossRefGoogle Scholar
  18. 18.
    Lippold J C, Welding Metallurgy and Weldability, John Wiley and Sons, NJ (2003) p 14.Google Scholar
  19. 19.
    Kou S, Welding Metallurgy, Second Edition, John Wiley and Sons, NJ (2003) p 170.Google Scholar
  20. 20.
    Kim S J, Choe B H, and Lee Y T, in Metallurgy and Technology of Practical Titanium Alloys, (eds) Fujishiro S, Eylon D, and Kishi T, TMS, Warrendale (1994), p 167.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Ahmad Lutfi Anis
    • 1
  • Mahesh Kumar Talari
    • 1
  • Izzul Adli Mohd Arif
    • 1
  • N. Kishore Babu
    • 2
  • Muhammad Hussain Ismail
    • 3
  • G. D. Janaki Ram
    • 4
  1. 1.Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.Laboratory for Advanced Materials ProcessingEmpa, Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
  3. 3.Faculty of Mechanical EngineeringUniversiti Teknologi MARAShah AlamMalaysia
  4. 4.Department of Metallurgical and Materials EngineeringIIT MadrasChennaiIndia

Personalised recommendations