Grain Refinement, Microstructural and Hardness Investigation of C Added Ti-15-3 Alloys Prepared by Argon Arc Melting

  • Izzul Adli Mohd Arif
  • Mahesh Kumar Talari
  • Ahmad Lutfi Anis
  • Muhammad Hussain Ismail
  • N. Kishore Babu
Technical Paper

Abstract

Mechanical properties of as-cast beta titanium (β-Ti) alloy can be improved by grain refinement and formation of insoluble precipitate. This paper reports the effect of carbon (C) addition on microstructure and hardness of cast Ti–15V–3Cr–3Sn–3Al (Ti-15-3) samples prepared by argon arc melting. X-ray diffraction analysis of C added as cast Ti-15-3 samples revealed the presence of β-Ti and TiC phases. Scanning electron microscope analysis revealed eutectic TiC precipitates in C added Ti-15-3 samples while a reduction in grain size was observed with increasing carbon addition. Inoculation effect due to TiC and growth restriction by C for β phase resulted in decreased grain size. Hardness of C added Ti-15-3 alloys increased with the increased carbon content of the sample. The improvement in hardness was contributed by grain refinement and the formation of TiC precipitates in the samples.

Keywords

Metastable β titanium Ti-15-3 TiC Microstructure Argon arc melting 

References

  1. 1.
    Boyer R R, Mater Sci Eng A, 213 1–2 (1996) 103.CrossRefGoogle Scholar
  2. 2.
    Lutjering G, and Williams J C, Titanium (2nd ed.) Springer-Verlag, Berlin, Heidelberg (2007) p 15.Google Scholar
  3. 3.
    Banerjee D, and Williams J C, Acta Mater, 61 3 (2013) 844.CrossRefGoogle Scholar
  4. 4.
    Leyens C, and Peters M, Titanium and Titanium Alloys, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2003) p 37.Google Scholar
  5. 5.
    Ankem S, and Greene C A, Mater Sci Eng A, 263 (1999) 127.CrossRefGoogle Scholar
  6. 6.
    Sarkar R, Ghosal P, Muraleedharan K, Nandy T K, and Ray K K, Mater Sci Eng A, 528 13–14 (2011) 4819.CrossRefGoogle Scholar
  7. 7.
    Tamirisakandala S, Bhat R B, Tiley J S, and Miracle D B, Scr Mater, 53 12 (2005) 1421.CrossRefGoogle Scholar
  8. 8.
    Banoth R, Sarkar R, Bhattacharjee A, Nandy T K, and Nageswara Rao G V S, Mater Des, 67 (2015) 50.CrossRefGoogle Scholar
  9. 9.
    Bermingham M J, McDonald S D, Nogita K, St. John D H, and Dargusch M S, Scr Mater, 59 5 (2008) 538.CrossRefGoogle Scholar
  10. 10.
    Bermingham M J, McDonald S D, St John D H, and Dargusch M S, J Alloys Compd, 481 1–2, (2009) 20.CrossRefGoogle Scholar
  11. 11.
    Tamirisakandala S, Bhat R B, Tiley J S, and Miracle D B, J Mater Eng Perform, 14 6 (2005) 741.CrossRefGoogle Scholar
  12. 12.
    Srinivasan Raghavan and Sesh T, Scr Mater, 63 12 (2010) 1244.CrossRefGoogle Scholar
  13. 13.
    Du Z X, Xiao S L, Wang P X, Xu L J, Chen Y Y, and Rahoma H K S, Mater Sci Eng A, 596 (2014) 71.CrossRefGoogle Scholar
  14. 14.
    Albersten K, and Schaller H J, Z Met 86 (1995) 319.Google Scholar
  15. 15.
    Raghavan V, Materials Science and Engineering (5th ed.), PHI learning Pvt Ltd, New Delhi (2010) p 286.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Izzul Adli Mohd Arif
    • 1
  • Mahesh Kumar Talari
    • 1
  • Ahmad Lutfi Anis
    • 1
  • Muhammad Hussain Ismail
    • 2
  • N. Kishore Babu
    • 3
  1. 1.Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.Faculty of Mechanical EngineeringUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.Laboratory for Advanced Materials ProcessingEmpa, Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland

Personalised recommendations