Optimization of Welding Parameters, Influence of Activating Flux and Investigation on the Mechanical and Metallurgical Properties of Activated TIG Weldments of AISI 316 L Stainless Steel

  • G. Chandrasekar
  • C. Kailasanathan
  • Dhanesh Kant Verma
  • K. Nandagopal
Technical Paper


This research investigation articulates the joining of AISI 316 L austenitic stainless steel plates of thickness 5 mm by activated tungsten inert gas (A-TIG) welding. Prior to the welding, the optimization of process parameters and the selection of suitable flux have been carried out to join the plates in a single pass welding. The experimental results show that the complete weld penetration can be achieved by using activating flux. The microscopic study divulges the presence of delta ferrite, sigma phase and various forms of austenite in the weld zone. Fischer Feritscope result indicates that the delta ferrite content in the weld is higher (7.8 FN) than the base metal (1.3 FN) which results in superior mechanical properties of the weld. Field Emission-Scanning Electron Microscope (FE-SEM) fractography reveals that the failure of weldments occurs in ductile mode. 180° bend test study reveals the good ductility of the joint.


AISI 316 L Activated TIG Widmanstatten austenite Grain boundary austenite Secondary austenite Optimization 


  1. 1.
    Amudarasan N V, Palanikumar K, and Shanmugam K, Adv Mater Res 849 (2014) 50.CrossRefGoogle Scholar
  2. 2.
    Mishra A, Chellapandi P, Suresh Kumar R, and Sasikala G, Trans Indian Inst Metals 68 (2015) 623.CrossRefGoogle Scholar
  3. 3.
    Peng D, Shen J, Tang Q, Wu C, and Zhou Y, Int J Miner Metall Mater 20 (2013) 259.CrossRefGoogle Scholar
  4. 4.
    Shen J, Li S, Zhai D, Wen L, Liu K, and Dai Y, Mater Manuf Process 28 (2013) 1240.CrossRefGoogle Scholar
  5. 5.
    Shen S, Oguocha I N A, and Yannacopoulos S, J Mater Process Technol 212 (2012) 286.CrossRefGoogle Scholar
  6. 6.
    Rao C S, Prasad K S, and Rao D N, J Miner Mater Charact Eng 11 (2012) 1027.CrossRefGoogle Scholar
  7. 7.
    Huang H Y, Mater Des 31 (2010) 2488.CrossRefGoogle Scholar
  8. 8.
    Kuo M, Sun Z, and Pan D, Sci Technol Weld Join 6 (2001) 17.CrossRefGoogle Scholar
  9. 9.
    Huang H Y, Metals Mater Int 16 (2010) 819.CrossRefGoogle Scholar
  10. 10.
    Shyu S W, Huang H Y, Tseng K H, and Chou C P, J Mater Eng Perform 17 (2008) 193.CrossRefGoogle Scholar
  11. 11.
    Kumar S A, Sathiya P, Mater Manuf Process 30 (2015) 1154.CrossRefGoogle Scholar
  12. 12.
    Tathgir S, Bhattacharya A, Bera T K, Materials and Manufacturing Processes 30 (9) 2015, p 1115.CrossRefGoogle Scholar
  13. 13.
    Lin H L, Wu T M, Mater Manuf Process 27 (2012) 1457.CrossRefGoogle Scholar
  14. 14.
    Nayee S G, Badheka V J, J Manuf Process 16 (2014) 137.CrossRefGoogle Scholar
  15. 15.
    Li S Z, Shen J, Cao Z M, Wang L Z, and Xu N, Sci Technol Weld Join 17 (2012) 467.Google Scholar
  16. 16.
    Vasudevan M, Bhaduri A K, Raj B, and Rao K P, Mater Manuf Process 22 (2007) 641.CrossRefGoogle Scholar
  17. 17.
    Katherasan D, Srivastava S, and Sathiya P, Trans Indian Inst Metals 66 (2013) 123.CrossRefGoogle Scholar
  18. 18.
    Kumar A, and Sundarrajan S, Mater Manuf Process 21 (2006) 779.CrossRefGoogle Scholar
  19. 19.
    Ramkumar K D, Mishra D, Raj B G, Vignesh M K, Thiruvengatam G, Sudharshan S P, Arivazhagan N, Sivashanmugam N, Rabel A M, Mater Des 66 (2015) 356.CrossRefGoogle Scholar
  20. 20.
    Arunkumar V, Vasudevan M, Maduraimuthu V, and Muthupandi V, Mater Manuf Process 27 (2012) 1171.CrossRefGoogle Scholar
  21. 21.
    Ahmadi E, and Ebrahimi A R, J Mater Eng Perform 24 (2015) 1065.CrossRefGoogle Scholar
  22. 22.
    Chern T S, Tseng K H, Tsai H L, Mater Des 32 (2011) 255.CrossRefGoogle Scholar
  23. 23.
    Morisada Y, Fujii H, Xukun N, Mater Des 54 (2014) 526.CrossRefGoogle Scholar
  24. 24.
    Dhandha K H, Badheka V J, J Manuf Process 17 (2015) 48.CrossRefGoogle Scholar
  25. 25.
    Klemetti K, Hanninen H, and Kivilahti J, Weld J 63 (1984) 17s.Google Scholar
  26. 26.
    Gray R J, Sikka V K, King R T, JOM 30 (1978) 18.CrossRefGoogle Scholar
  27. 27.
    Zucato I, Moreira M C, Machado I F, and lebrao S M G, Mater Res 5 (2002) 385.CrossRefGoogle Scholar
  28. 28.
    Itman Filho A, Silva R V, Cardoso W D S, and Casteletti L C, Mater Res 17 (2014) 801.CrossRefGoogle Scholar
  29. 29.
    Svensson L E, Control of Microstructures and Properties in Steel Arc Welds. CRC Press, Technology & Engineering, USA (1993).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringPSNA College of Engineering and TechnologyDindigulIndia
  2. 2.Department of Mechanical EngineeringSethu Institute of TechnologyKariapatti, Virudhunagar DistrictIndia
  3. 3.Welding Research InstituteBharat Heavy Electricals LimitedThiruchirappalliIndia
  4. 4.Department of Automobile EngineeringSSM Institute of Engineering and TechnologyDindigulIndia

Personalised recommendations