Skip to main content
Log in

Anomalous Optical Properties of xSrO–10PbO–(90 − x)B2O3 Glass System

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Raman and UV–Vis spectral analysis of xSrO–10PbO–(90 − x)B2O3 glasses were carried out to elucidate the structural and optical behaviour due to borate anomaly. Raman analysis revealed that the glasses consisted of mainly trigonal groups (metaborate) and tetrahedral groups (ditri/dipentaborate and diborate) at lower SrO content. Concentration of diborate groups reached a maximum value at x = 30 mol% and were replaced by pyroborate, metaborate and orthoborate groups as SrO content in the glass increased. Maximum value of optical band gap (E opt ) and minimum values of electronic polarizability (αO2−), optical basicity (Λ) and refractive index (n) were obtained when x = 25 mol%, which was lower compared to maximum of diborate group (x = 30 mol%) as observed from Raman spectroscopic analysis. Observed mismatch in diborate groups and E opt maxima was attributed to the formation of weak coordinated covalent bonds during structural transformation and addition of cation with high polarizability to the xSrO–10PbO–(90 − x)B2O3 glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garrett D E, Borates: Handbook of Deposits, Processing, Properties, and Use, Academic Press, California (1998).

    Google Scholar 

  2. Shelby J E, Introduction to Glass Science and Technology, (2nd ed), The Royal Society of Chemistry, Cambridge (2005).

    Google Scholar 

  3. Meera B N, Sood A K, Chandrabhas N, and Ramakrishna J, J Non Cryst Solids 126 (1990) 224.

    Article  Google Scholar 

  4. Thakur V, Singh A, Punia R, Kaur M, and Singh L, Ceram Int 41 (2015) 10957.

    Article  Google Scholar 

  5. Singh G P, and Singh D P, Phys B Condens Matter 406 (2011) 3402.

    Article  Google Scholar 

  6. Abdel-Baki M, Abdel-Wahab F A, Radi A, and El-Diasty F, J Phys Chem Solids 68 (2007) 1457.

    Article  Google Scholar 

  7. Kirdsiri K, Kaewkhao J, Chanthima N, and Limsuwan P, Ann Nucl Energy, 38 (2011) 1438.

    Article  Google Scholar 

  8. Saddeek Y B, Phys B Condens Matter 344 (2004) 163.

    Article  Google Scholar 

  9. Ohta Y, Shimada M, and Koizumi M, J Non Cryst Solids 51 (1982) 161.

    Article  Google Scholar 

  10. Yiannopoulos Y D, Chryssikos G D, and Kamitsos E I, Phys Chem Glasses 42 (2001) 164.

    Google Scholar 

  11. Lower N P, Mcrae J L, Feller H A, Betzen A R, Kapoor S, Mario A, and Feller S A, J Non. Cryst Solids 293 (2001) 669.

    Article  Google Scholar 

  12. Kapoor S, George H B, Betzen A, Affatigato M, Feller S, J Non Cryst Solids 270 (2000) 215.

    Article  Google Scholar 

  13. Lim E, Kim B, Lee J, and Kim J, J Eur Ceram Soc 27 (2007) 825.

    Article  Google Scholar 

  14. Mader K -H, Loretz T J, in Borate Glasses: Structure, Properties, Applications, (eds) Pye L D, Fréchette V D, and Kreidl N J, Plenum Press, New York 1978, p 549.

  15. Sabri N S, Yahya A K, Abd-Shukor R, Talari M K, J Non Cryst Solids 444 (2016) 55.

    Article  Google Scholar 

  16. Mohajerani A, Martin V, Boyd D, and Zwanziger J W, J Non Cryst Solids 381 (2013) 29.

    Article  Google Scholar 

  17. Pan Z D, Morgan S H, and Long B H, J Non Cryst Solids 185 (1995) 127.

    Article  Google Scholar 

  18. Kashif I, Abd El-Maboud A, El-said R, Sakr E M, and Soliman A A, J Alloys Compd 539 (2012) 124.

    Article  Google Scholar 

  19. Veeranna Gowda V C, Narayana Reddy C, Radha K C, Anavekar R V, Etourneau J, and Rao K J, J Non Cryst Solids 353 (2007) 1150.

    Article  Google Scholar 

  20. Kaundal R S, Kaur S, Singh N, and Singh K J, J Phys Chem Solids 71 (2010) 1191.

    Article  Google Scholar 

  21. Limkitjaroenporn P, Kaewkhao J, Limsuwan P, and Chewpraditkul W, J Phys Chem Solids 72 (2011) 245.

    Article  Google Scholar 

  22. Maniu D, Ardelean I, Iliescu T, Cı̂nta S, Nagel V, and Kiefer W, J Mol Struct 2860 (1997) 291.

    Google Scholar 

  23. Pascuta P, Lungu R, and Ardelean I, J Mater Sci Mater Electron 21 (2010) 548.

    Article  Google Scholar 

  24. Arunkumar S, and Marimuthu K, J Alloys Compd 565 (2013) 104.

    Article  Google Scholar 

  25. Krogh-Moe J, Phys Chem Glasses 6 (1965) 46.

    Google Scholar 

  26. Dwivedi B P, and Khanna B N, J Phys Chem Solids 56 (1995) 39.

    Article  Google Scholar 

  27. Sudhakar B K, Chand N R K, Prasanna H N L, Rao G S, Rao K V, and Dhand V, J Non Cryst Solids 356 (2010) 2211.

    Article  Google Scholar 

  28. Yao Z Y, Möncke D, Kamitsos E I, Houizot P, Célarié F, Rouxel T, and Wondraczek L, J Non Cryst Solids 435 (2016) 55.

    Article  Google Scholar 

  29. Yano T, Kunimine N, Shibata S, and Yamane M, J Non Cryst Solids 321 (2003) 147.

    Article  Google Scholar 

  30. Padmaja G, and Kistaiah P, J Phys Chem A 113 (2009) 2397.

    Article  Google Scholar 

  31. Lim S.-G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, Uecker R, Reiche P, Freeouf J L, and Lucovsky G, J Appl Phys 91 (2002) 4500.

    Article  Google Scholar 

  32. Zaid M H M, Matori K A, Aziz S H A, Kamari H M, Wahab Z A, Effendy N, and Alibe I M, J Non Cryst Solids 449 (2016) 107.

    Article  Google Scholar 

  33. Mallur S B, Czarnecki T, Adhikari A, and Babu P K, Mater Res Bull 68 (2015) 27.

    Article  Google Scholar 

  34. Mott N F, and Davis E A, Electronic Processes in Non-crystalline Materials, (2nd ed), Oxford University Press, Oxford (1977).

    Google Scholar 

  35. Sindhu S, Sanghi S, Agarwal A, Seth V P, and Kishore N, Mater Chem Phys 90 (2005) 83.

    Article  Google Scholar 

  36. Saritha D, Markandeya Y, Salagram M, Vithal M, Singh A K, and Bhikshamaiah G, J Non Cryst Solids 354 (2008) 5573.

    Article  Google Scholar 

  37. Dimitrov V, and Komatsu T, J Univ Chem Technol Metall 45 (2010) 219.

    Google Scholar 

  38. Dimitrov V, and Sakka S, J Appl Phys 79 (1996) 1736.

    Article  Google Scholar 

  39. Abdel-Baki M, and El-Diasty F, Curr Opin Solid State Mater Sci 10 (2006) 217.

    Article  Google Scholar 

  40. Upender G, Sameera Devi C, Chandra Mouli V, Mater Res Bull 47 (2012) 3764.

    Article  Google Scholar 

  41. Coelho J, Freire C, and Hussain N S, Spectrochim Acta A Mol Biomol Spectrosc 86 (2012)392.

    Article  Google Scholar 

  42. Duffy J A, Phys Chem Glasses 30 (1989) 1.

    Google Scholar 

  43. Akagi R, Ohtori N, and Umesaki N, J Non Cryst Solids 293 (2001) 471.

    Article  Google Scholar 

  44. Winterstein-beckmann A, Möncke D, Palles D, Kamitsos E I, and Wondraczek L, J Non Cryst Solids 376 (2013) 165.

    Article  Google Scholar 

  45. Wright A C, Int J Appl Glasses Sci 63 (2015) 45.

    Article  Google Scholar 

  46. Singh D, Thind K S, Mudahar G S, and Bajwa B S, Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268 (2010) 3340.

  47. Hudon P, and Baker D R, J Non Cryst Solids 303 (2002) 354.

    Article  Google Scholar 

  48. Hummel R E, Energy 1 (2011)19.

    Google Scholar 

  49. Gayathri Pavani P, Sadhana K, and Chandra Mouli V, Phys B Condens Matter 406 (2011) 1242.

    Article  Google Scholar 

  50. Umair M M, Yahya A K, Halimah M K, and Sidek H A A, J Mater Sci Technol 31 (2015) 83.

    Article  Google Scholar 

  51. Kaur G, Pandey O P, and Singh K, J Non Cryst Solids 358 (2012) 2589.

    Article  Google Scholar 

  52. Saddeek Y B, Aly K A, and Bashier S A, Phys B Condens Matter 405 (2010) 2407.

    Article  Google Scholar 

  53. Upender G, Ramesh S, Prasad M, Sathe V G, and Mouli V C, J Alloys Compd 504 (2010) 468.

    Article  Google Scholar 

  54. Honma T, Benino Y, Komatsu T, Sato R, and Dimitrov V, Phys Chem Glasses 43 (2002) 32.

    Google Scholar 

  55. Honma T, Sato R, Benino Y, Komatsu T, Dimitrov V, J Non Cryst Solids 272 (2000) 1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Teknologi MARA for funding this research project under the RAGS UiTM Project no. 600-RMI/RAGS 5/3 (23/2015). Moreover, the authors would like to express their gratitude to the Universiti Teknologi MARA and the Ministry of Education of Malaysia for the SLAB/TPM scholarship given to Nurul Syahidah Sabri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar Talari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabri, N.S., Yahya, A.K. & Talari, M.K. Anomalous Optical Properties of xSrO–10PbO–(90 − x)B2O3 Glass System. Trans Indian Inst Met 70, 557–565 (2017). https://doi.org/10.1007/s12666-017-1043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1043-8

Keywords

Navigation