Skip to main content
Log in

Characterisation of Minerals and Ores: On the Complementary Nature of Select Techniques and Beyond

  • Overview
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This overview is written as a tribute to my teacher, Professor Arun Kumar Biswas who introduced me to the discipline of minerals characterisation over three decades back. The focus of the paper is on complementary nature of techniques used for mineralogical characterisation of ores, minerals and, intermediate and final products generated during processing. The subject matter is essentially covered in two parts. In the first part, a general outlook is given based on the research summary dealing with a wide spectrum of materials and processes investigated. The potential and limitations of some commonly used tools/techniques are highlighted. In the second part, specific examples are presented under different themes covering phase identification, quantification of phases, heterogeneity in ores, occurrence of minor elements and their reactivity, mechanically activated solids, and lastly, structure-leachability correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Edited volume published on the 60th Birthday of Prof. Arun Kumar Biswas.

Abbreviations

α:

Fractional conversion

ε, εc :

Microstrain (by XRD)

Δc:

Change in lattice parameter c, nm

AEM:

Analytical electron microscope

AFM:

Atomic force microscope/microscopy

Am :

Degree of amorphisation

AMFA:

Attrition milled fly ash

ASM:

American Society for Metals

B or B-:

Birnessite (0.7 nm phase)

B j :

Standardised partial regression coefficient for variable j

b o , b j :

Parameters of regression equation

BSE:

Back scattered electron mode in SEM

Bu or Bu-:

Buserite (1 nm phase)

CFA:

Classified fly ash

CFSE:

Crystal field stabilisation energy

Co(C):

Cobalt doped in coprecipitation mode

COD:

Crystal Open Database

d:

Inter-planar spacing, nm

d10, d50, d90 :

Characteristic particle diameters, μm

DTA:

Differential thermal analysis

E :

Activation energy at fractional conversion α, kJ/mol

EDS:

Energy dispersive spectrometry

EELS:

Electron energy loss spectroscopy

EM:

Electron microscope

ESCA:

Electron spectroscopy for chemical analysis (same as XPS)

EXAFS:

Extended X-ray absorption fine structure spectroscopy

FA:

Fly ash

FFe :

Fraction of iron leached

FR :

Fraction of doped element R leached

FTIR:

Fourier transform infrared spectroscopy

G or G-:

Goethite

GGBFS:

Ground granulated blast furnace slag

In:

Doping in ion-exchange mode

IR:

Infrared spectroscopy

IRS:

Internal reflectance spectroscopy

j :

Variable number

JCPDS:

Joint Committee on Powder Diffraction Standards

LOI:

Loss on ignition, wt. %

MCD:

Micro crystalline dimension (by XRD), nm

MCD00l :

MCD in <00l> direction, nm

MCDc :

MCD in c- direction, nm

OM:

Optical microscope/microscopy

PCA:

Principal component analysis

PSD:

Particle size distribution

QSEM:

Quantitative scanning electron microscopy

QXRD:

Quantitative X-ray diffraction analysis

R:

Doped element (Ni/Co/Cu)

RFA:

Raw fly ash

rxy :

Binary correlation coefficient between variables x and y

SA:

Surface area, m2/g

SAED:

Selected area electron diffraction

SE:

Secondary electron mode in SEM

SEM:

Scanning electron microscope

SMILE:

Simultaneous milling and leaching

SSABET :

Specific surface area (BET), m2/g

SSAGeo :

Specific surface area (geometrical), m2/g

STM:

Scanning tunnelling microscope/microscopy

t:

Time, min

T(m,n):

Nomenclature for manganese oxide minerals

TEM:

Transmission electron microscope

TG:

Thermogravimetric analysis

tMA :

Milling time, min

VMFA:

Vibratory milled fly ash

WDS:

Wave length dispersive spectrometry

XANES:

X-ray absorption near edge structure spectroscopy

XAS:

X-ray absorption spectroscopy

x or X j :

Independent variable

y:

Dependent variable

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

Z:

Atomic number

References

  1. Biswas A K, in: Frontiers in Applied Chemistry, (ed) Biswas A K, Narosa Publishing House and Springer, New Delhi (1989), p 11.

  2. Biswas A K, in: Froth Flotation: Rec ent Trends, (eds) Singh R, and Bhattacharyya K K, IIME Jamshedpur, India(1998), p 1.

  3. Brown R J C, and Milton M J T, TrAC - Trends Anal Chem 24 (2005) 266.

    Article  Google Scholar 

  4. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Miner Process Extr Metal Rev 37 (2015) 1.

    Article  Google Scholar 

  5. Baláž P, Mechanochemistry in Nanoscience and Minerals Engineering, Springer-Verlag, Berlin Heidelberg (2008) p 133.

    Book  Google Scholar 

  6. Kumar R, and Ray R K, in: Selected Topics in Mineral Processing, (eds) Pradip, and Kumar R, Wiley Eastern Limited, New Delhi (1995), p 1.

  7. Kumar R, and Mehrotra S P, Unpublised work (2016) (Book Chapter: Recent Developments and Applications of Some Structural Characterisation Techniques in Mineralogy and Materials Processing, in: (eds) Pradip, and Mehrotra S P, Indian Institute of Mineral Engineers (IIME) Special Volume, under preparation)

  8. Biswas A K, Indian J Hist Sci 28 (1993) 309.

    Google Scholar 

  9. Biswas A K, Gangopadhyay A, and Ramachandran T R, Trans Indian Inst Met 37 (1984) 234.

    Google Scholar 

  10. Kumar R, and Biswas A K, Hydrometallurgy 15 (1986) 267.

    Article  Google Scholar 

  11. Kumar R, Ray R K, and Biswas A K, Trans Indian Inst Met 44 (1991) 119.

    Google Scholar 

  12. Kumar R, in: Mineral Processing: Recent Advances and Future Trends, (eds) Mehrotra S P, and Shekhar R, Allied Publishers Ltd., New Delhi (1995) p 262.

  13. Kumar R, Ray R K, and Biswas A K, Trans Indian Inst Met 47 (1994) 273.

    Google Scholar 

  14. Kumar R, Ray R K, and Biswas A K, Trans. Indian Inst Met 45 (1992) 287.

    Google Scholar 

  15. Kumar R, and Ray R K, Mater Charact 40 (1998) 7.

    Article  Google Scholar 

  16. Kumar R, Hydrometallurgy 52 (1999) 71.

    Article  Google Scholar 

  17. Kumar R, Ray R K, and Biswas A K, in: Productivity and Technology in the Metallurgical Industries, (eds) Koch M, and Taylor J C, The Metallurgical Society (TMS), Warrendale, PA (1989), p 561.

  18. Kumar R, Mater Trans JIM 35 (1994) 27.

    Article  Google Scholar 

  19. Kumar R, Das S, Ray R K, and Biswas A K, Hydrometallurgy 32 (1993) 39.

    Article  Google Scholar 

  20. Kumar R, Ray R K, and Biswas A K, Hydrometallurgy 25 (1990) 61.

    Article  Google Scholar 

  21. Kumar R, and Das S, Metall Mater Trans B 29 (1998) 527.

    Article  Google Scholar 

  22. Bandhyopadhyay D, Bandopadhaya A, Roy K, Mitra B K, Kumar R, and Gupta, K N, Patent IN199479, 6 October, 2006.

  23. Application Report XRD 7 D2 PHASER Desktop XRD: Anode Coke (Lc Value) Analysis (2009), available from www.d2phaser.com/images/d2-phaser/PDF/Application_Report_XRD_7_D2_PHASER_Anode_Coke_DOC-R88-EXS007_high.pdf

  24. Use of Standard Testing Methods in X-Ray Diffraction (2002) (available from http://www.handmanalytical.com/pdfs/standards.pdf)

  25. Srivastava J P, Kumar R, Goel R P, Rao D S, Sil S K, Chattoraj U S, and Maulik S C, Studies on Updraft Lead Sintering for Improving Strand Productivity at HZL’S Visakhapatanam Plant (Report of Investigation SSP 0069), CSIR-National Metallurgical Laboratory, Jamshedpur (2000).

    Google Scholar 

  26. Kumar R, Alex T C, Srivastava J P, Ravi Kumar B, Khan Z H, Mahapatra S P, and Mishra C R, Met Mater Process 16 (2004) 171.

    Google Scholar 

  27. Kumar R, Alex T C, Jha M K, Khan Z H, Mahaptra S P, Mishra C R, in: Light Metals 2004, (ed) Crepeau P, The Metallurgical Society (TMS), Warrendale, PA (2004), p 31.

  28. Kumar R, Alex T C, Khan Z H, Mahapatra S P, and Mehrotra S P, in: Light Metals 2005, (ed) Kvande H, The Metallurgical Society (TMS), Warrendale, PA (2005), p 77.

  29. Kumar R, Kumar S, Badjena S, and Mehrotra S P, Metall Mater Trans B 36 (2005) 873.

    Article  Google Scholar 

  30. Kumar S, Kumar R, and Mehrotra S P, J Mater Sci 45 (2009) 607.

    Article  Google Scholar 

  31. Kumar S, Kumar R, Bandopadhyay A, Alex T C, Ravi Kumar B, Das S K, and Mehrotra S P, Cem Concr Compos 30 (2008) 679.

    Article  Google Scholar 

  32. Kumar S, Kumar R, and Bandopadhyay A, Resour Conserv Recycl 48 (2006) 301.

    Article  Google Scholar 

  33. Mucsi G, Kumar S, Csőke B, Kumar R, Molnár Z, Rácz Á, Mádai F, and Debreczeni Á, Int J Miner Process 143 (2015) 50.

    Article  Google Scholar 

  34. Kumar S, and Kumar R, in: Sustainable Construction Materials and Technologies, Vol 1, (eds) Zachar J, Claisse P, Naik T R, and Ganjian E, UWM Center for By-Products Utilization, Milwaukee, Wisconsin, USA (2010), p 607.

  35. Kumar S, and Kumar R, Ceram Int 37 (2011) 533.

    Article  Google Scholar 

  36. Kumar S, Kumar R, and Mehrotra S P, in: Frontiers in Mechanochemistry and Mechanical Alloying [ISBN 81-7764-258-8], (eds) Kumar R, Srikanth S, and Mehrotra S P, Intentional Mechanochemistry Association and National Metallurgical Laboratory, Jamshedpur (2011) p 320.

  37. Kumar S, Kumar R, Alex T C, Bandopadhyay A, and Mehrotra S P, Adv Appl Ceram 106 (2007) 120.

    Article  Google Scholar 

  38. Kumar R, Kumar S, and Mehrotra S P, Resour Conserv Recycl 52 (2007) 157.

    Article  Google Scholar 

  39. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Hydrometallurgy 137 (2013) 23.

    Article  Google Scholar 

  40. Alex T C, Sasi Kumar C, Kailath A J, Kumar R, Roy S K, and Mehrotra S P, Metall Mater Trans B 42 (2011) 592.

    Article  Google Scholar 

  41. Mehrotra S P, Alex T C, Greifzu G, and Kumar R, Trans. Indian Inst Met 69 (2016) 51.

    Article  Google Scholar 

  42. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Adv Powder Technol 19 (2008) 483.

    Article  Google Scholar 

  43. Alex T C, Kumar R, Roy S K, and Mehrotra S P, in: Light Metals 2012, (ed) Suarez C E, The Metallurgical Society (TMS), Warrendale, PA (2012) p 15.

  44. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Powder Technol 264 (2014) 229.

    Article  Google Scholar 

  45. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Powder Technol 264 (2014) 105.

    Article  Google Scholar 

  46. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Hydrometallurgy 144–145 (2014) 99.

    Article  Google Scholar 

  47. Kumar R, and Alex T C, Metall Mater Trans B 46 (2015) 1684.

    Article  Google Scholar 

  48. Shakhtshneider T P, Myz S A, Dyakonova M A, Boldyrev V V, Boldyreva E V, Nizovskii A I, Kalinkin A V, and Kumar R, Acta Physica Polonica A 120 (2011) 272.

    Article  Google Scholar 

  49. Shakhtshneider T P, Myz S A, Boldyreva E V, Nizovskii A I, and Kumar R, Acta Physica Polonica A 126 (2014) 1019.

    Article  Google Scholar 

  50. Srikanth S, Laxmi Devi V, Kumar R, Hydrometallurgy 165 (2016) 125.

    Article  Google Scholar 

  51. Tammishetti V, Rai B, Ravikumar B, Kumar R, Pradip, Trans Indian Inst Met 69 (2016) 125.

    Article  Google Scholar 

  52. Bish D L, and Post J E (eds), Modern Powder Diffraction. Reviews in Mineralogy, Vol. 20, The Mineralogical Society of America, Washington DC (1989).

  53. Chan R W, Haasen E J, and Kramer E J (eds), Materials Science and Technology—Characterization of Materials, Vol. 2A, VCH Weinheim, Germany (1992).

    Google Scholar 

  54. Hursta V J, Schroeder P A, and Styron R W, Anal Chim Acta 337 (1997) 233.

    Article  Google Scholar 

  55. Mittemeijer E J, Welzel U, in: Modern Diffraction Methods, (eds) Mittemeijer E J, and Welzel U, Wiley-VCH, Weinheim, Germany (2012), p 89.

  56. Yoshio W, Eiichiro M, and Kozo S, X-Ray Diffraction Crystallography (Introduction, Examples and Solved Problems), Springer-Verlag Berlin Heidelberg, 2011, 310 pp.

    Google Scholar 

  57. Spence J C H, Mater Sci Eng R26 (1999) 1.

    Article  Google Scholar 

  58. Zussman J, Miner Mag 51 (1987) 129.

    Article  Google Scholar 

  59. Champness P E, Miner Mag 51 (1987) 33.

    Article  Google Scholar 

  60. Drits V A, Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures, Springer-Verlag, Berlin (1987).

    Book  Google Scholar 

  61. Thomas G, in: Images of Materials, (eds) Williams D B, Pelton A R, and Gronsky R, Oxford University Press, New York (1991), p 143.

  62. Midgley P A, Saunders M, Vincent R, and Steeds J W, Ultramicroscopy 59 (1995) 1.

    Article  Google Scholar 

  63. Williams D B, and Carter C B, Transmission Electron Microscopy - A Textbook for Materials Science, Springer US (2009) 775 pp.

    Google Scholar 

  64. An Introduction to Electron Microscopy, booklet available from https://www.fei.com/introduction-to-electron-microscopy/.

  65. Goldstein J, Newbury D E, Joy D C, Lyman C E, Echlin P, Lifshin E, Sawyer L, and Michael J R, Scanning Electron Microscopy and X-ray Microanalysis, Springer US (2003).

    Book  Google Scholar 

  66. Robertson K, Gauvin R, and Finch J, Min Engg 18 (2005) 343.

    Article  Google Scholar 

  67. Gu Y, J Miner Mater Charact Eng 2 (2003) 33.

    Google Scholar 

  68. Lloyd G E, Schmidt N H, Mainprice D, and Prior D J, Miner Mag 55 (1991) 331.

    Article  Google Scholar 

  69. Reed S J B, Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, Cambridge University Press (2010).

  70. Lloyd G E, Miner Mag 51 (1987) 3.

    Article  Google Scholar 

  71. Trimby P W, and Prior D J, Tectonophysics 303 (1999) 71.

    Article  Google Scholar 

  72. Jenkins B, Gottlieb P, Wilkie G, Sutherland D, Ho-Tun E, Suthers S, Perera K, Spencer S, Butcher A, and Rayner J, J Met 54 (2000) 24.

    Google Scholar 

  73. Goodall W R, Scales P J, and Butcher A R, Miner Eng 18 (2005) 877.

    Article  Google Scholar 

  74. O’Keefe C A, Watne T M, and Hurley J P, Powder Technol 108 (2000) 95.

    Article  Google Scholar 

  75. Dingley D, J Microsc 213 (2004) 214.

    Article  Google Scholar 

  76. Trimby P, Day A, Mehnert K, and Schmidt, N –H, J Microsc 205 (2002) 259.

    Article  Google Scholar 

  77. Love G, and Scott V D, J Microsc 201 (2001) 1.

    Article  Google Scholar 

  78. Heinrich K F J, and Newbury D E (eds), Electron Probe Quantitation, Plenum Press, New York (1991).

    Google Scholar 

  79. Potts P J, Bowles J F, Reed S J, Cave R (eds), Microprobe Techniques in Earth Sciences, The Mineralogical Society Series, Vol. 6. Springer US (1995).

    Google Scholar 

  80. Goldstein J I, and William D B, Microbeam Anal 1 (1992) 29.

    Google Scholar 

  81. Williams D B, Goldstein J I, Newbury D E (eds), X-ray Spectrometry in Electron Beam Instruments, Plenum Press, New York, NY (1995).

    Google Scholar 

  82. Bustin G M, Mastalerz M, and Raudsepp M, Int J Coal Geol 32 (1996) 5.

    Article  Google Scholar 

  83. Hunt J A, and William D B, Ultramicroscopy 38 (1991) 47.

    Article  Google Scholar 

  84. Wang Z L, and Cowley J M, Surf Sci 193 (1988) 501.

    Article  Google Scholar 

  85. Qian M, Sarikaya M, and Stern E A, Ultramicroscopy 59 (1995) 137.

    Article  Google Scholar 

  86. Egerton R F, and Malac M, J Electron Spectros Relat Phenomena 143 (2005) 43.

    Article  Google Scholar 

  87. Hawthorne F C (ed), Spectroscopic Methods in Mineralogy and Geology, Reviews in Mineralogy, Vol. 18, The Mineralogical Society of America, Washington DC (1988).

    Google Scholar 

  88. Teo B K, EXAFS: Basic Principles and Data Analysis, Springer-Verlag, Berlin (1986).

    Book  Google Scholar 

  89. Rehr J J, and Ankudinov A L, Coord Chem Rev 249 (2005) 131.

    Article  Google Scholar 

  90. Chan R W, Haasen E J, Kramer E J (eds), Materials Science and Technology - Characterization of Materials, Vol. 2B. VCH Weinheim, Germany (1994).

    Google Scholar 

  91. Sperline R P, Muralidharan S, and Freiser H, Langmuir 3 (1987) 198.

    Article  Google Scholar 

  92. Perry D L (ed), Instrumental Surface AnalysIs of Geologic Materials, VCH Publisher, New York (1990).

    Google Scholar 

  93. Watts J F, and Wolstenholme J, An Introduction to Surface Analysis by XPS and AES, Wiley-VCH, Weinheim, Germany (2003).

    Book  Google Scholar 

  94. Hochella M F J, White A F (eds), Mineral Water Interface Geochemistry; Reviews in Mineralogy, Vol. 23, Mineralogical Society of America, Washington DC (1990).

    Google Scholar 

  95. Tonner B P, Dunham D, Droubay T, Kikuma J, Denlinger J, Rotenberg E, and Warwick A, J Electron Spectros Relat Phenomena 75 (1995) 309.

    Article  Google Scholar 

  96. Haugstad G, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications, John Wiley and Sons Inc. (2012), 522 pp.

  97. Robinson G D, Chem Geol 47 (1984) 97.

    Article  Google Scholar 

  98. Paterson E, Am Mineral 66 (1981) 424.

    Google Scholar 

  99. Isothermal microcalorimetry, https://en.wikipedia.org/wiki/Isothermal_microcalorimetry

  100. Spectral line shape, https://en.wikipedia.org/wiki/Spectral_line_shape

  101. Savitzky A, and Golay M J E, Anal Chem 36 (1964) 1627.

    Article  Google Scholar 

  102. Chipera S J, and Bish D L, Adv Mater Phys Chem 3 (2013) 47.

    Article  Google Scholar 

  103. Historical Landmarks - ASM International, http://www.asminternational.org/membership/awards/historical-landmarks

  104. Sen P K, Int Mater Rev 55 (2010) 364.

    Article  Google Scholar 

  105. Kumar R, Characterisation and Leaching Studies on Deep Sea Manganese Nodules and the Synthetic Analogs, Ph D Thesis, Indian Institute of Technology, Kanpur, India (1988).

  106. Hayes B W, Law S L, Barron D C, Kramer G W, Maeda R, and Magyar M J, Pacific Manganese Nodules: Characterisation and Processing, Bulletin 679, US Dept. of the Interior, Bureau of Mines (1985) 44 pp.

    Google Scholar 

  107. Tammishetti V, Sivakumar S, Kumar D, Rai B, and Pradip, in: IMPC 2016: XXVIII International Mineral Processing Congress Proceedings (ISBN: 978-1-926872-29-2), Canadian Institute of Mining, Metallurgy and Petroleum (2016), 11 pp (www.researchgate.net/publication/309135087_quantitative_estimation_of_minerals_in_iron_ores_using_chemical_assays_and_thermo-gravimetry_analysis_data).

  108. Knorr K, and Neumann R, in: Proceedings of the 10th International Congress for Applied Mineralogy (ICAM 2011), (ed) Broekmans, Maarten A T M, Springer-Verlag Berlin Heidelberg (2012), p 377.

  109. Kirwan L, Lawson D, Rijkeboer A, Hodnett K, Mooney A, and Walker R, in: Light Metals 2009, (ed) Berne G, The Minerals, Metals & Materials Society (TMS), Warrandale, PA (2009), p 133.

  110. Neumann R, Avelar A N, and Costa G M, Miner Eng 55 (2014) 80.

    Article  Google Scholar 

  111. Gan B K, Taylor Z, Xu B, Riessen A, Hart R D, Wang X, and Smith P, Int J Miner Process 123 (2013) 64.

    Article  Google Scholar 

  112. König U, Quantitative x-ray analysis of different iron ores by Rietveld refinement, avaiable from: http://www.geologie.uni-halle.de/igw/mingeo/assets/koenig_1_25_11_04.pdf

  113. Knorr K, Bornefeld M, Analysis of Iron Ore – A combined XRD, XRF and MLA study. in: Conference proceedings Process Mineralogy’12, (ed) Wills B A, MEI – Minerals Engineering International, Cape Town, South Africa (7–9 November 2012) (available from: https://www.researchgate.net/publication/255968460_Analysis_of_Iron_Ore_-_A_combined_XRD_XRF_and_MLA_study).

  114. PanAnalytical: XRD Application Note - X-ray diffraction (XRD) for grade control of iron ores (source: http://www.airedale.com/web/file?uuid=82e53530-b45c-404b-b792-8292e12ac97f&owner=00665561-0d44-44d2-970a-86c7e16f7742).

  115. Paine M, König U, Staples E, in: Proceedings of the 10th International Congress for Applied Mineralogy (ICAM 2011), (ed) Broekmans, Maarten A T M, Springer-Verlag Berlin Heidelberg (2012), p 495.

  116. Ouhadi V R, and Yong R N, Appl Clay Sci 23 (2003) 141.

    Article  Google Scholar 

  117. Kahle M, Kleber M, and Jahn R, Geoderma 109 (2002) 191.

    Article  Google Scholar 

  118. Aranda M A G, De la Torre A G, Rev Mineral Geochemistry 74 (2012) 169.

    Article  Google Scholar 

  119. Walenta G, and Füllmann T, Adv X-ray Anal (JCPDS - Int. Cent. Diffr. Data 2004) 47 287.

    Google Scholar 

  120. Winburn R S, Adv X-Ray Anal 46 (2003) 210.

    Google Scholar 

  121. Crystallography Open Database (COD), http://www.crystallography.net/cod/.

  122. Fazey P G, O’Connor B H, Hammond L C, Clays Clays Miner 39 (1991) 248.

    Article  Google Scholar 

  123. Suhr D D, Principal Component Analysis vs. Exploratory Factor Analysis (SUGI 30, Paper 203-30), http://www2.sas.com/proceedings/sugi30/203-30.pdf.

  124. Geladi P, and Grahn H F, Multivariate Image Analysis. Encyclopedia of Analytical Chemistry, Wiley Online Library.

  125. Shimizu V K, Kahn H, Antoniassi J, and Carina U, Rem Rev Esc Minas 65 (2012) 561.

    Article  Google Scholar 

  126. Prosser A P, Hydrometallurgy 41 (1996) 119.

    Article  Google Scholar 

  127. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Powder Technol 208 (2011) 128.

    Article  Google Scholar 

  128. Schwertmann U, Clay Miner 19 (1984) 9.

    Article  Google Scholar 

  129. Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J M, Delogu F, Dutková E, Gaffet E, Gotor F J, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, and Wieczorek-Ciurowa K, Chem Soc Rev 42 (2013) 7571.

    Article  Google Scholar 

  130. Baláž P, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin, Heidelberg, (2008), pp 1.

    Book  Google Scholar 

  131. Juhasz A Z, and Opoczky L, Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles, Ellis Horwood Limited, New York (1994), 234 pp.

    Google Scholar 

  132. Kumar R, Kumar S, Bandopadhaya A, and Mehrotra S P, Patent IN254099, 19 September, 2012.

  133. Kumar R, Kumar S, Bandopadhaya A, Alex T C, and Mehrotra S P, Patent US7,410,537 B2, 12 August 2008; and CA 2555498, 5 April 2011.

  134. Kumar R, Kumar S, and Mehrotra S P, in: Frontiers in Mechanochemistry and Mechanical Alloying [ISBN 81-7764-258-8], (eds) Kumar R, Srikanth S, and Mehrotra S P, International Mechanochemistry Association and National Metallurgical Laboratory, Jamshedpur, (2011), p 294.

  135. Kumar S, Bandopadhyay A, Rajinikanth V, Alex T C, Kumar R, J Mater Sci 39 (2004) 3449.

    Article  Google Scholar 

  136. Kumar S, Kumar R, Bandopadhaya A, Alex T C, and Mehrotra S P, Patent IN251997, 20 April 2012.

  137. Mehta P K, in: Proc. 3rd Int. Conf. on Fly Ash, Silica Fume, and Natural Pozzolans in Concrete, Tronheim, Norway, 1989, SP-114, (ed) Malhotra V M, American Concrete Institute, Farmington Hills, MI (1989) p 1.

  138. Richardson I G, in: Structure and Performance of Cements, 2nd edition, Spon Press, London (2002) p 500.

    Google Scholar 

  139. Richardson I G, Groves G W, J Mater Sci 27 (1992) 6204.

    Article  Google Scholar 

  140. Kumar R, Kumar S, Alex T C, Srikanth S, and Mehrotra S P, in: Experimental and Theoretical Approaches to Modern Mechanochemistry, (eds) Gabriele M, and Francesco D, Transworld Research Network, Chennai (2010), p 255.

  141. Mehrotra S P, Kumar R, and Kumar S, in: Proceedings of XXIII International Mineral Processing Congress, Turkey, (eds) Onal G, Acarkan N, Celik A S, Arslan F, Atesok G, Guney A, Sirkeci A, Yuce A E, and Perek K T, Promedadvertising Agency, Istanbul, Tuekey (2006), p 2188.

  142. Lee W K W, and van Deventer J S J, Colloids Surfaces A Physicochem Eng Asp 211 (2002) 49.

    Article  Google Scholar 

  143. Jeffries D A, and Stumm W, Can Miner 14 (1976) 16.

    Google Scholar 

  144. Varentsov I M, Bakov N Y, Dikov Y P, Gendler T S, and Giovanoli R, Acta Miner Petrog Szeged 24 (1979) 63.

    Google Scholar 

  145. Giovanoli R, Bürki P, and Giuffredi M, Chimia (Aarau) 29 (1975) 517.

    Google Scholar 

Download references

Acknowledgements

The work reported in this paper is outcome of author’s collaboration with several of his mentors, colleagues and associates. The author would like to thank and express his gratitude for all of them, especially, Prof. S P Mehrotra, late Prof. P Ramachandra Rao (formerly Directors, CSIR-NML); Profs. R K Ray and T R Ramachandran (ex IIT Kanpur); Drs. Sanjay Kumar, T C Alex, S Srikanth, B Ravi Kumar, Swapan Das, late Samar Das, T Mishra, (CSIR-NML); and Dr. Pradip (TRDDC-TCS), Prof. Nirdosh K. Khosla (IIT Bombay) and Dr. Arup Gangopadhyay (Ford Motor Company). Support from Dr. K Muraleedharan (Director, CSIR-NML and CSIR-CGCRI) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R. Characterisation of Minerals and Ores: On the Complementary Nature of Select Techniques and Beyond. Trans Indian Inst Met 70, 253–277 (2017). https://doi.org/10.1007/s12666-016-1006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-1006-5

Keywords

Navigation