Characterisation of Minerals and Ores: On the Complementary Nature of Select Techniques and Beyond

  • Rakesh KumarEmail author


This overview is written as a tribute to my teacher, Professor Arun Kumar Biswas who introduced me to the discipline of minerals characterisation over three decades back. The focus of the paper is on complementary nature of techniques used for mineralogical characterisation of ores, minerals and, intermediate and final products generated during processing. The subject matter is essentially covered in two parts. In the first part, a general outlook is given based on the research summary dealing with a wide spectrum of materials and processes investigated. The potential and limitations of some commonly used tools/techniques are highlighted. In the second part, specific examples are presented under different themes covering phase identification, quantification of phases, heterogeneity in ores, occurrence of minor elements and their reactivity, mechanically activated solids, and lastly, structure-leachability correlations.


Mineralogy Characterisation techniques Heterogeneity in ores Mechanical activation Oxyhydroxide minerals Amorphous solids Structure-leachability correlations 

List of Symbols


Fractional conversion

ε, εc

Microstrain (by XRD)


Change in lattice parameter c, nm


Analytical electron microscope


Atomic force microscope/microscopy


Degree of amorphisation


Attrition milled fly ash


American Society for Metals

B or B-

Birnessite (0.7 nm phase)


Standardised partial regression coefficient for variable j

bo, bj

Parameters of regression equation


Back scattered electron mode in SEM

Bu or Bu-

Buserite (1 nm phase)


Classified fly ash


Crystal field stabilisation energy


Cobalt doped in coprecipitation mode


Crystal Open Database


Inter-planar spacing, nm

d10, d50, d90

Characteristic particle diameters, μm


Differential thermal analysis


Activation energy at fractional conversion α, kJ/mol


Energy dispersive spectrometry


Electron energy loss spectroscopy


Electron microscope


Electron spectroscopy for chemical analysis (same as XPS)


Extended X-ray absorption fine structure spectroscopy


Fly ash


Fraction of iron leached


Fraction of doped element R leached


Fourier transform infrared spectroscopy

G or G-



Ground granulated blast furnace slag


Doping in ion-exchange mode


Infrared spectroscopy


Internal reflectance spectroscopy


Variable number


Joint Committee on Powder Diffraction Standards


Loss on ignition, wt. %


Micro crystalline dimension (by XRD), nm


MCD in <00l> direction, nm


MCD in c- direction, nm


Optical microscope/microscopy


Principal component analysis


Particle size distribution


Quantitative scanning electron microscopy


Quantitative X-ray diffraction analysis


Doped element (Ni/Co/Cu)


Raw fly ash


Binary correlation coefficient between variables x and y


Surface area, m2/g


Selected area electron diffraction


Secondary electron mode in SEM


Scanning electron microscope


Simultaneous milling and leaching


Specific surface area (BET), m2/g


Specific surface area (geometrical), m2/g


Scanning tunnelling microscope/microscopy


Time, min


Nomenclature for manganese oxide minerals


Transmission electron microscope


Thermogravimetric analysis


Milling time, min


Vibratory milled fly ash


Wave length dispersive spectrometry


X-ray absorption near edge structure spectroscopy


X-ray absorption spectroscopy

x or Xj

Independent variable


Dependent variable


X-ray photoelectron spectroscopy


X-ray diffraction


Atomic number



The work reported in this paper is outcome of author’s collaboration with several of his mentors, colleagues and associates. The author would like to thank and express his gratitude for all of them, especially, Prof. S P Mehrotra, late Prof. P Ramachandra Rao (formerly Directors, CSIR-NML); Profs. R K Ray and T R Ramachandran (ex IIT Kanpur); Drs. Sanjay Kumar, T C Alex, S Srikanth, B Ravi Kumar, Swapan Das, late Samar Das, T Mishra, (CSIR-NML); and Dr. Pradip (TRDDC-TCS), Prof. Nirdosh K. Khosla (IIT Bombay) and Dr. Arup Gangopadhyay (Ford Motor Company). Support from Dr. K Muraleedharan (Director, CSIR-NML and CSIR-CGCRI) is gratefully acknowledged.


  1. 1.
    Biswas A K, in: Frontiers in Applied Chemistry, (ed) Biswas A K, Narosa Publishing House and Springer, New Delhi (1989), p 11.Google Scholar
  2. 2.
    Biswas A K, in: Froth Flotation: Rec ent Trends, (eds) Singh R, and Bhattacharyya K K, IIME Jamshedpur, India(1998), p 1.Google Scholar
  3. 3.
    Brown R J C, and Milton M J T, TrAC - Trends Anal Chem 24 (2005) 266.CrossRefGoogle Scholar
  4. 4.
    Alex T C, Kumar R, Roy S K, and Mehrotra S P, Miner Process Extr Metal Rev 37 (2015) 1.CrossRefGoogle Scholar
  5. 5.
    Baláž P, Mechanochemistry in Nanoscience and Minerals Engineering, Springer-Verlag, Berlin Heidelberg (2008) p 133.CrossRefGoogle Scholar
  6. 6.
    Kumar R, and Ray R K, in: Selected Topics in Mineral Processing, (eds) Pradip, and Kumar R, Wiley Eastern Limited, New Delhi (1995), p 1.Google Scholar
  7. 7.
    Kumar R, and Mehrotra S P, Unpublised work (2016) (Book Chapter: Recent Developments and Applications of Some Structural Characterisation Techniques in Mineralogy and Materials Processing, in: (eds) Pradip, and Mehrotra S P, Indian Institute of Mineral Engineers (IIME) Special Volume, under preparation)Google Scholar
  8. 8.
    Biswas A K, Indian J Hist Sci 28 (1993) 309.Google Scholar
  9. 9.
    Biswas A K, Gangopadhyay A, and Ramachandran T R, Trans Indian Inst Met 37 (1984) 234.Google Scholar
  10. 10.
    Kumar R, and Biswas A K, Hydrometallurgy 15 (1986) 267.CrossRefGoogle Scholar
  11. 11.
    Kumar R, Ray R K, and Biswas A K, Trans Indian Inst Met 44 (1991) 119.Google Scholar
  12. 12.
    Kumar R, in: Mineral Processing: Recent Advances and Future Trends, (eds) Mehrotra S P, and Shekhar R, Allied Publishers Ltd., New Delhi (1995) p 262.Google Scholar
  13. 13.
    Kumar R, Ray R K, and Biswas A K, Trans Indian Inst Met 47 (1994) 273.Google Scholar
  14. 14.
    Kumar R, Ray R K, and Biswas A K, Trans. Indian Inst Met 45 (1992) 287.Google Scholar
  15. 15.
    Kumar R, and Ray R K, Mater Charact 40 (1998) 7.CrossRefGoogle Scholar
  16. 16.
    Kumar R, Hydrometallurgy 52 (1999) 71.CrossRefGoogle Scholar
  17. 17.
    Kumar R, Ray R K, and Biswas A K, in: Productivity and Technology in the Metallurgical Industries, (eds) Koch M, and Taylor J C, The Metallurgical Society (TMS), Warrendale, PA (1989), p 561.Google Scholar
  18. 18.
    Kumar R, Mater Trans JIM 35 (1994) 27.CrossRefGoogle Scholar
  19. 19.
    Kumar R, Das S, Ray R K, and Biswas A K, Hydrometallurgy 32 (1993) 39.CrossRefGoogle Scholar
  20. 20.
    Kumar R, Ray R K, and Biswas A K, Hydrometallurgy 25 (1990) 61.CrossRefGoogle Scholar
  21. 21.
    Kumar R, and Das S, Metall Mater Trans B 29 (1998) 527.CrossRefGoogle Scholar
  22. 22.
    Bandhyopadhyay D, Bandopadhaya A, Roy K, Mitra B K, Kumar R, and Gupta, K N, Patent IN199479, 6 October, 2006.Google Scholar
  23. 23.
    Application Report XRD 7 D2 PHASER Desktop XRD: Anode Coke (Lc Value) Analysis (2009), available from
  24. 24.
    Use of Standard Testing Methods in X-Ray Diffraction (2002) (available from
  25. 25.
    Srivastava J P, Kumar R, Goel R P, Rao D S, Sil S K, Chattoraj U S, and Maulik S C, Studies on Updraft Lead Sintering for Improving Strand Productivity at HZL’S Visakhapatanam Plant (Report of Investigation SSP 0069), CSIR-National Metallurgical Laboratory, Jamshedpur (2000).Google Scholar
  26. 26.
    Kumar R, Alex T C, Srivastava J P, Ravi Kumar B, Khan Z H, Mahapatra S P, and Mishra C R, Met Mater Process 16 (2004) 171.Google Scholar
  27. 27.
    Kumar R, Alex T C, Jha M K, Khan Z H, Mahaptra S P, Mishra C R, in: Light Metals 2004, (ed) Crepeau P, The Metallurgical Society (TMS), Warrendale, PA (2004), p 31.Google Scholar
  28. 28.
    Kumar R, Alex T C, Khan Z H, Mahapatra S P, and Mehrotra S P, in: Light Metals 2005, (ed) Kvande H, The Metallurgical Society (TMS), Warrendale, PA (2005), p 77.Google Scholar
  29. 29.
    Kumar R, Kumar S, Badjena S, and Mehrotra S P, Metall Mater Trans B 36 (2005) 873.CrossRefGoogle Scholar
  30. 30.
    Kumar S, Kumar R, and Mehrotra S P, J Mater Sci 45 (2009) 607.CrossRefGoogle Scholar
  31. 31.
    Kumar S, Kumar R, Bandopadhyay A, Alex T C, Ravi Kumar B, Das S K, and Mehrotra S P, Cem Concr Compos 30 (2008) 679.CrossRefGoogle Scholar
  32. 32.
    Kumar S, Kumar R, and Bandopadhyay A, Resour Conserv Recycl 48 (2006) 301.CrossRefGoogle Scholar
  33. 33.
    Mucsi G, Kumar S, Csőke B, Kumar R, Molnár Z, Rácz Á, Mádai F, and Debreczeni Á, Int J Miner Process 143 (2015) 50.CrossRefGoogle Scholar
  34. 34.
    Kumar S, and Kumar R, in: Sustainable Construction Materials and Technologies, Vol 1, (eds) Zachar J, Claisse P, Naik T R, and Ganjian E, UWM Center for By-Products Utilization, Milwaukee, Wisconsin, USA (2010), p 607.Google Scholar
  35. 35.
    Kumar S, and Kumar R, Ceram Int 37 (2011) 533.CrossRefGoogle Scholar
  36. 36.
    Kumar S, Kumar R, and Mehrotra S P, in: Frontiers in Mechanochemistry and Mechanical Alloying [ISBN 81-7764-258-8], (eds) Kumar R, Srikanth S, and Mehrotra S P, Intentional Mechanochemistry Association and National Metallurgical Laboratory, Jamshedpur (2011) p 320.Google Scholar
  37. 37.
    Kumar S, Kumar R, Alex T C, Bandopadhyay A, and Mehrotra S P, Adv Appl Ceram 106 (2007) 120.CrossRefGoogle Scholar
  38. 38.
    Kumar R, Kumar S, and Mehrotra S P, Resour Conserv Recycl 52 (2007) 157.CrossRefGoogle Scholar
  39. 39.
    Alex T C, Kumar R, Roy S K, and Mehrotra S P, Hydrometallurgy 137 (2013) 23.CrossRefGoogle Scholar
  40. 40.
    Alex T C, Sasi Kumar C, Kailath A J, Kumar R, Roy S K, and Mehrotra S P, Metall Mater Trans B 42 (2011) 592.CrossRefGoogle Scholar
  41. 41.
    Mehrotra S P, Alex T C, Greifzu G, and Kumar R, Trans. Indian Inst Met 69 (2016) 51.CrossRefGoogle Scholar
  42. 42.
    Alex T C, Kumar R, Roy S K, and Mehrotra S P, Adv Powder Technol 19 (2008) 483.CrossRefGoogle Scholar
  43. 43.
    Alex T C, Kumar R, Roy S K, and Mehrotra S P, in: Light Metals 2012, (ed) Suarez C E, The Metallurgical Society (TMS), Warrendale, PA (2012) p 15.Google Scholar
  44. 44.
    Alex T C, Kumar R, Roy S K, and Mehrotra S P, Powder Technol 264 (2014) 229.CrossRefGoogle Scholar
  45. 45.
    Alex T C, Kumar R, Roy S K, and Mehrotra S P, Powder Technol 264 (2014) 105.CrossRefGoogle Scholar
  46. 46.
    Alex T C, Kumar R, Roy S K, and Mehrotra S P, Hydrometallurgy 144–145 (2014) 99.CrossRefGoogle Scholar
  47. 47.
    Kumar R, and Alex T C, Metall Mater Trans B 46 (2015) 1684.CrossRefGoogle Scholar
  48. 48.
    Shakhtshneider T P, Myz S A, Dyakonova M A, Boldyrev V V, Boldyreva E V, Nizovskii A I, Kalinkin A V, and Kumar R, Acta Physica Polonica A 120 (2011) 272.CrossRefGoogle Scholar
  49. 49.
    Shakhtshneider T P, Myz S A, Boldyreva E V, Nizovskii A I, and Kumar R, Acta Physica Polonica A 126 (2014) 1019.CrossRefGoogle Scholar
  50. 50.
    Srikanth S, Laxmi Devi V, Kumar R, Hydrometallurgy 165 (2016) 125.CrossRefGoogle Scholar
  51. 51.
    Tammishetti V, Rai B, Ravikumar B, Kumar R, Pradip, Trans Indian Inst Met 69 (2016) 125.CrossRefGoogle Scholar
  52. 52.
    Bish D L, and Post J E (eds), Modern Powder Diffraction. Reviews in Mineralogy, Vol. 20, The Mineralogical Society of America, Washington DC (1989).Google Scholar
  53. 53.
    Chan R W, Haasen E J, and Kramer E J (eds), Materials Science and Technology—Characterization of Materials, Vol. 2A, VCH Weinheim, Germany (1992).Google Scholar
  54. 54.
    Hursta V J, Schroeder P A, and Styron R W, Anal Chim Acta 337 (1997) 233.CrossRefGoogle Scholar
  55. 55.
    Mittemeijer E J, Welzel U, in: Modern Diffraction Methods, (eds) Mittemeijer E J, and Welzel U, Wiley-VCH, Weinheim, Germany (2012), p 89.Google Scholar
  56. 56.
    Yoshio W, Eiichiro M, and Kozo S, X-Ray Diffraction Crystallography (Introduction, Examples and Solved Problems), Springer-Verlag Berlin Heidelberg, 2011, 310 pp.Google Scholar
  57. 57.
    Spence J C H, Mater Sci Eng R26 (1999) 1.CrossRefGoogle Scholar
  58. 58.
    Zussman J, Miner Mag 51 (1987) 129.CrossRefGoogle Scholar
  59. 59.
    Champness P E, Miner Mag 51 (1987) 33.CrossRefGoogle Scholar
  60. 60.
    Drits V A, Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures, Springer-Verlag, Berlin (1987).CrossRefGoogle Scholar
  61. 61.
    Thomas G, in: Images of Materials, (eds) Williams D B, Pelton A R, and Gronsky R, Oxford University Press, New York (1991), p 143.Google Scholar
  62. 62.
    Midgley P A, Saunders M, Vincent R, and Steeds J W, Ultramicroscopy 59 (1995) 1.CrossRefGoogle Scholar
  63. 63.
    Williams D B, and Carter C B, Transmission Electron Microscopy - A Textbook for Materials Science, Springer US (2009) 775 pp.Google Scholar
  64. 64.
    An Introduction to Electron Microscopy, booklet available from
  65. 65.
    Goldstein J, Newbury D E, Joy D C, Lyman C E, Echlin P, Lifshin E, Sawyer L, and Michael J R, Scanning Electron Microscopy and X-ray Microanalysis, Springer US (2003).CrossRefGoogle Scholar
  66. 66.
    Robertson K, Gauvin R, and Finch J, Min Engg 18 (2005) 343.CrossRefGoogle Scholar
  67. 67.
    Gu Y, J Miner Mater Charact Eng 2 (2003) 33.Google Scholar
  68. 68.
    Lloyd G E, Schmidt N H, Mainprice D, and Prior D J, Miner Mag 55 (1991) 331.CrossRefGoogle Scholar
  69. 69.
    Reed S J B, Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, Cambridge University Press (2010).Google Scholar
  70. 70.
    Lloyd G E, Miner Mag 51 (1987) 3.CrossRefGoogle Scholar
  71. 71.
    Trimby P W, and Prior D J, Tectonophysics 303 (1999) 71.CrossRefGoogle Scholar
  72. 72.
    Jenkins B, Gottlieb P, Wilkie G, Sutherland D, Ho-Tun E, Suthers S, Perera K, Spencer S, Butcher A, and Rayner J, J Met 54 (2000) 24.Google Scholar
  73. 73.
    Goodall W R, Scales P J, and Butcher A R, Miner Eng 18 (2005) 877.CrossRefGoogle Scholar
  74. 74.
    O’Keefe C A, Watne T M, and Hurley J P, Powder Technol 108 (2000) 95.CrossRefGoogle Scholar
  75. 75.
    Dingley D, J Microsc 213 (2004) 214.CrossRefGoogle Scholar
  76. 76.
    Trimby P, Day A, Mehnert K, and Schmidt, N –H, J Microsc 205 (2002) 259.CrossRefGoogle Scholar
  77. 77.
    Love G, and Scott V D, J Microsc 201 (2001) 1.CrossRefGoogle Scholar
  78. 78.
    Heinrich K F J, and Newbury D E (eds), Electron Probe Quantitation, Plenum Press, New York (1991).Google Scholar
  79. 79.
    Potts P J, Bowles J F, Reed S J, Cave R (eds), Microprobe Techniques in Earth Sciences, The Mineralogical Society Series, Vol. 6. Springer US (1995).Google Scholar
  80. 80.
    Goldstein J I, and William D B, Microbeam Anal 1 (1992) 29.Google Scholar
  81. 81.
    Williams D B, Goldstein J I, Newbury D E (eds), X-ray Spectrometry in Electron Beam Instruments, Plenum Press, New York, NY (1995).Google Scholar
  82. 82.
    Bustin G M, Mastalerz M, and Raudsepp M, Int J Coal Geol 32 (1996) 5.CrossRefGoogle Scholar
  83. 83.
    Hunt J A, and William D B, Ultramicroscopy 38 (1991) 47.CrossRefGoogle Scholar
  84. 84.
    Wang Z L, and Cowley J M, Surf Sci 193 (1988) 501.CrossRefGoogle Scholar
  85. 85.
    Qian M, Sarikaya M, and Stern E A, Ultramicroscopy 59 (1995) 137.CrossRefGoogle Scholar
  86. 86.
    Egerton R F, and Malac M, J Electron Spectros Relat Phenomena 143 (2005) 43.CrossRefGoogle Scholar
  87. 87.
    Hawthorne F C (ed), Spectroscopic Methods in Mineralogy and Geology, Reviews in Mineralogy, Vol. 18, The Mineralogical Society of America, Washington DC (1988).Google Scholar
  88. 88.
    Teo B K, EXAFS: Basic Principles and Data Analysis, Springer-Verlag, Berlin (1986).CrossRefGoogle Scholar
  89. 89.
    Rehr J J, and Ankudinov A L, Coord Chem Rev 249 (2005) 131.CrossRefGoogle Scholar
  90. 90.
    Chan R W, Haasen E J, Kramer E J (eds), Materials Science and Technology - Characterization of Materials, Vol. 2B. VCH Weinheim, Germany (1994).Google Scholar
  91. 91.
    Sperline R P, Muralidharan S, and Freiser H, Langmuir 3 (1987) 198.CrossRefGoogle Scholar
  92. 92.
    Perry D L (ed), Instrumental Surface AnalysIs of Geologic Materials, VCH Publisher, New York (1990).Google Scholar
  93. 93.
    Watts J F, and Wolstenholme J, An Introduction to Surface Analysis by XPS and AES, Wiley-VCH, Weinheim, Germany (2003).CrossRefGoogle Scholar
  94. 94.
    Hochella M F J, White A F (eds), Mineral Water Interface Geochemistry; Reviews in Mineralogy, Vol. 23, Mineralogical Society of America, Washington DC (1990).Google Scholar
  95. 95.
    Tonner B P, Dunham D, Droubay T, Kikuma J, Denlinger J, Rotenberg E, and Warwick A, J Electron Spectros Relat Phenomena 75 (1995) 309.CrossRefGoogle Scholar
  96. 96.
    Haugstad G, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications, John Wiley and Sons Inc. (2012), 522 pp.Google Scholar
  97. 97.
    Robinson G D, Chem Geol 47 (1984) 97.CrossRefGoogle Scholar
  98. 98.
    Paterson E, Am Mineral 66 (1981) 424.Google Scholar
  99. 99.
  100. 100.
  101. 101.
    Savitzky A, and Golay M J E, Anal Chem 36 (1964) 1627.CrossRefGoogle Scholar
  102. 102.
    Chipera S J, and Bish D L, Adv Mater Phys Chem 3 (2013) 47.CrossRefGoogle Scholar
  103. 103.
  104. 104.
    Sen P K, Int Mater Rev 55 (2010) 364.CrossRefGoogle Scholar
  105. 105.
    Kumar R, Characterisation and Leaching Studies on Deep Sea Manganese Nodules and the Synthetic Analogs, Ph D Thesis, Indian Institute of Technology, Kanpur, India (1988).Google Scholar
  106. 106.
    Hayes B W, Law S L, Barron D C, Kramer G W, Maeda R, and Magyar M J, Pacific Manganese Nodules: Characterisation and Processing, Bulletin 679, US Dept. of the Interior, Bureau of Mines (1985) 44 pp.Google Scholar
  107. 107.
    Tammishetti V, Sivakumar S, Kumar D, Rai B, and Pradip, in: IMPC 2016: XXVIII International Mineral Processing Congress Proceedings (ISBN: 978-1-926872-29-2), Canadian Institute of Mining, Metallurgy and Petroleum (2016), 11 pp (
  108. 108.
    Knorr K, and Neumann R, in: Proceedings of the 10th International Congress for Applied Mineralogy (ICAM 2011), (ed) Broekmans, Maarten A T M, Springer-Verlag Berlin Heidelberg (2012), p 377.Google Scholar
  109. 109.
    Kirwan L, Lawson D, Rijkeboer A, Hodnett K, Mooney A, and Walker R, in: Light Metals 2009, (ed) Berne G, The Minerals, Metals & Materials Society (TMS), Warrandale, PA (2009), p 133.Google Scholar
  110. 110.
    Neumann R, Avelar A N, and Costa G M, Miner Eng 55 (2014) 80.CrossRefGoogle Scholar
  111. 111.
    Gan B K, Taylor Z, Xu B, Riessen A, Hart R D, Wang X, and Smith P, Int J Miner Process 123 (2013) 64.CrossRefGoogle Scholar
  112. 112.
    König U, Quantitative x-ray analysis of different iron ores by Rietveld refinement, avaiable from:
  113. 113.
    Knorr K, Bornefeld M, Analysis of Iron Ore – A combined XRD, XRF and MLA study. in: Conference proceedings Process Mineralogy’12, (ed) Wills B A, MEI – Minerals Engineering International, Cape Town, South Africa (7–9 November 2012) (available from:
  114. 114.
    PanAnalytical: XRD Application Note - X-ray diffraction (XRD) for grade control of iron ores (source:
  115. 115.
    Paine M, König U, Staples E, in: Proceedings of the 10th International Congress for Applied Mineralogy (ICAM 2011), (ed) Broekmans, Maarten A T M, Springer-Verlag Berlin Heidelberg (2012), p 495.Google Scholar
  116. 116.
    Ouhadi V R, and Yong R N, Appl Clay Sci 23 (2003) 141.CrossRefGoogle Scholar
  117. 117.
    Kahle M, Kleber M, and Jahn R, Geoderma 109 (2002) 191.CrossRefGoogle Scholar
  118. 118.
    Aranda M A G, De la Torre A G, Rev Mineral Geochemistry 74 (2012) 169.CrossRefGoogle Scholar
  119. 119.
    Walenta G, and Füllmann T, Adv X-ray Anal (JCPDS - Int. Cent. Diffr. Data 2004) 47 287.Google Scholar
  120. 120.
    Winburn R S, Adv X-Ray Anal 46 (2003) 210.Google Scholar
  121. 121.
    Crystallography Open Database (COD),
  122. 122.
    Fazey P G, O’Connor B H, Hammond L C, Clays Clays Miner 39 (1991) 248.CrossRefGoogle Scholar
  123. 123.
    Suhr D D, Principal Component Analysis vs. Exploratory Factor Analysis (SUGI 30, Paper 203-30),
  124. 124.
    Geladi P, and Grahn H F, Multivariate Image Analysis. Encyclopedia of Analytical Chemistry, Wiley Online Library.Google Scholar
  125. 125.
    Shimizu V K, Kahn H, Antoniassi J, and Carina U, Rem Rev Esc Minas 65 (2012) 561.CrossRefGoogle Scholar
  126. 126.
    Prosser A P, Hydrometallurgy 41 (1996) 119.CrossRefGoogle Scholar
  127. 127.
    Alex T C, Kumar R, Roy S K, and Mehrotra S P, Powder Technol 208 (2011) 128.CrossRefGoogle Scholar
  128. 128.
    Schwertmann U, Clay Miner 19 (1984) 9.CrossRefGoogle Scholar
  129. 129.
    Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J M, Delogu F, Dutková E, Gaffet E, Gotor F J, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, and Wieczorek-Ciurowa K, Chem Soc Rev 42 (2013) 7571.CrossRefGoogle Scholar
  130. 130.
    Baláž P, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin, Heidelberg, (2008), pp 1.CrossRefGoogle Scholar
  131. 131.
    Juhasz A Z, and Opoczky L, Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles, Ellis Horwood Limited, New York (1994), 234 pp.Google Scholar
  132. 132.
    Kumar R, Kumar S, Bandopadhaya A, and Mehrotra S P, Patent IN254099, 19 September, 2012.Google Scholar
  133. 133.
    Kumar R, Kumar S, Bandopadhaya A, Alex T C, and Mehrotra S P, Patent US7,410,537 B2, 12 August 2008; and CA 2555498, 5 April 2011.Google Scholar
  134. 134.
    Kumar R, Kumar S, and Mehrotra S P, in: Frontiers in Mechanochemistry and Mechanical Alloying [ISBN 81-7764-258-8], (eds) Kumar R, Srikanth S, and Mehrotra S P, International Mechanochemistry Association and National Metallurgical Laboratory, Jamshedpur, (2011), p 294.Google Scholar
  135. 135.
    Kumar S, Bandopadhyay A, Rajinikanth V, Alex T C, Kumar R, J Mater Sci 39 (2004) 3449.CrossRefGoogle Scholar
  136. 136.
    Kumar S, Kumar R, Bandopadhaya A, Alex T C, and Mehrotra S P, Patent IN251997, 20 April 2012.Google Scholar
  137. 137.
    Mehta P K, in: Proc. 3rd Int. Conf. on Fly Ash, Silica Fume, and Natural Pozzolans in Concrete, Tronheim, Norway, 1989, SP-114, (ed) Malhotra V M, American Concrete Institute, Farmington Hills, MI (1989) p 1.Google Scholar
  138. 138.
    Richardson I G, in: Structure and Performance of Cements, 2nd edition, Spon Press, London (2002) p 500.Google Scholar
  139. 139.
    Richardson I G, Groves G W, J Mater Sci 27 (1992) 6204.CrossRefGoogle Scholar
  140. 140.
    Kumar R, Kumar S, Alex T C, Srikanth S, and Mehrotra S P, in: Experimental and Theoretical Approaches to Modern Mechanochemistry, (eds) Gabriele M, and Francesco D, Transworld Research Network, Chennai (2010), p 255.Google Scholar
  141. 141.
    Mehrotra S P, Kumar R, and Kumar S, in: Proceedings of XXIII International Mineral Processing Congress, Turkey, (eds) Onal G, Acarkan N, Celik A S, Arslan F, Atesok G, Guney A, Sirkeci A, Yuce A E, and Perek K T, Promedadvertising Agency, Istanbul, Tuekey (2006), p 2188.Google Scholar
  142. 142.
    Lee W K W, and van Deventer J S J, Colloids Surfaces A Physicochem Eng Asp 211 (2002) 49.CrossRefGoogle Scholar
  143. 143.
    Jeffries D A, and Stumm W, Can Miner 14 (1976) 16.Google Scholar
  144. 144.
    Varentsov I M, Bakov N Y, Dikov Y P, Gendler T S, and Giovanoli R, Acta Miner Petrog Szeged 24 (1979) 63.Google Scholar
  145. 145.
    Giovanoli R, Bürki P, and Giuffredi M, Chimia (Aarau) 29 (1975) 517.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2016

Authors and Affiliations

  1. 1.CSIR-National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations