Skip to main content
Log in

Multiphase CFD Modelling of Mineral Separators Performance: Validation Against Tomography Data

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper aims on application of computational fluid dynamic (CFD) modelling on two-phase and multiphase flows in 75 mm conventional hydrocyclone, 350 mm dense medium cyclone (DMC) and 100 mm diameter laboratory column flotation. Along with classification experiments, a dual-planar high speed electrical resistance tomography (ERT) is used to measure the internal flow dynamics in situ in 75 mm hydrocyclone and column flotation at different operating conditions. Experiments are carried out in 75 mm hydrocyclone for different operational parameters and feed solids content varying in the range of 0–30 wt%. Results are presented in terms of the air core diameter and solids volume fraction contours using Maxwell’s conductivity equation. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Similarly, ERT is used to estimate the mean gas hold-up and radial distribution in order to understand the hydrodynamics of the column flotation. The effect of air superficial velocity and liquid flow rate on gas hold-up is discussed. Algebraic slip mixture model modified with lift, drag and rheology is used to predict the air core size, the solid concentration distribution and classification performance for the hydrocyclone. Validation of air core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted. The CFD predicted air core radius and medium segregation in the DMC is validated against literature based gamma ray tomography data. Further discrete phase model (DPM) is used to track and measure the residence times of different size and density coal particles. CFD predicted gas hold-up in the column flotation is also validated against in-house measured ERT and imaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Bradley D, The Hydrocyclone, Pergamon Press Ltd, London 1965.

    Google Scholar 

  2. Honaker R Q, and Mohanty M K, Miner Eng 9 (1996) 931.

    Article  Google Scholar 

  3. Jena M S, Biswal S K, Das S P, and Reddy P S R, Fuel Process Technol 89 (2008) 1409.

    Article  Google Scholar 

  4. Chu K W, Wang B, Yu A B, Vince A, Barnett G D, and Barnett P J, Powder Technol 193 (2009) 235.

    Article  Google Scholar 

  5. Cullivan J C, Williams R A, and Cross C R, Trans I Chem 81 (2003) 455.

    Article  Google Scholar 

  6. Narasimha M, Brennan M S, Holtham P N, and Napier-Munn T J, Miner Eng 20 (2007) 414.

    Article  Google Scholar 

  7. Vakamalla T R, Kumbhar K S, Gujjula R, and Mangadoddy N, Sep Purif Technol 138 (2014) 104.

    Article  Google Scholar 

  8. Narasimha M, Brennan M S, and Holtham P N, Miner Eng 39 (2012) 173.

    Article  Google Scholar 

  9. Narasimha M, Sripriya R, and Banerjee P K, Int J Miner Process 75 (2005) 53.

    Article  Google Scholar 

  10. Delnoij E, Westerweel J, Deen N G, Kuipers J A M, and van Swaaij W P M, Chem Eng Sci 54 (1999) 5159.

    Article  Google Scholar 

  11. Marins L P M, Duarte D G, Loureiro J B R, Moraes C A C, and Freire A P S, J Pet Sci Technol 70 (2010) 168.

    Google Scholar 

  12. Hsieh K T, and Rajamani R K, Int J Miner Process 22 (1988) 223.

    Article  Google Scholar 

  13. Subramanian V J, Measurement of Medium Segregation in the Dense Medium Cyclone using Gamma-Ray Tomography, JKMRC, University of Queensland, Brisbane (2002).

    Google Scholar 

  14. Rakesh A, Kumar Reddy V T S R, and Narasimha M, Chem Eng Technol 37 (2014) 795.

    Article  Google Scholar 

  15. Wang M, Flow Meas Instrum 16 (2005) 183.

    Article  Google Scholar 

  16. Williams R A, Jia X, West R M, Climpson N, Kostuci J A, and Payton D, Miner Eng 12 (1999) 1245.

    Article  Google Scholar 

  17. Gutiérreza J A, Dyakowski T, Beck M S, and Williams R A, Powder Technol 108 (2000) 180.

    Article  Google Scholar 

  18. O’Hern T J, Torczynski J R, Ceccio S L, Tassin A L, Chahine G L, Duraiswami R, and Sarkar K, Development of an Electrical Impedance Tomography System for an AirWater Vertical Bubble Column, Forum on Measurement Techniques in Multiphase Flows, ASME IMEC&E, San Francisco, CA (1995).

    Google Scholar 

  19. Warsito W, and Fan L S, Chem Eng Sci 56 (2001) 6455.

    Article  Google Scholar 

  20. Radman J R, Langlois R, Leadbeater T, Finch J, Rowson N, and Waters K, Miner Eng 62 (2014) 142.

    Article  Google Scholar 

  21. West R M, Jia X, and Williams R A, Chem Eng Commun 175 (1999) 71.

    Article  Google Scholar 

  22. Maxwell J C, A Treatise on Electricity and Magnetism, Calender Press, Oxford (1881).

    Google Scholar 

  23. Jin H, Wang M, and Williams R A, Chem Eng J 130 (2007) 179.

    Article  Google Scholar 

  24. Kelsall D F, Trans Inst Chem Eng 30 (1952) 87.

    Google Scholar 

  25. Svarovsky L, Hydrocyclones, Holt, Rinehart and Winson Ltd., London (1984).

    Google Scholar 

  26. Dabir B, Mean Velocity Measurements in a 3 Hydrocyclone Using Laser Doppler Anemometry, Department of Chemical Engineering, Michigan State University, Michigan (1983).

    Google Scholar 

  27. Luo Q, Deng C, Xu J, Yu L, and Xiong G, Int J Miner Process 25 (1989) 297.

    Article  Google Scholar 

  28. Zhou N, Gao Y, An W, and Yang M, Chem Eng J 157 (2010) 73.

    Article  Google Scholar 

  29. Williams R A, Dickin F, Gutiérreza J A, Dyakowski T, and Beck M S, Control Eng Pract 5 (1997) 253.

    Article  Google Scholar 

  30. Dyakowski T, and Williams B, Powder Technol 87 (1996) 43.

    Article  Google Scholar 

  31. Wood C J, A Performance Model for Coal-Washing Dense Medium Cyclones, University of Queensland, Australia (1990).

    Google Scholar 

  32. Vakamalla T R, and Mangadoddy N, Powder Technol 277 (2015) 275.

    Article  Google Scholar 

  33. Vakamalla T R, Koruprolu V B R, Arugonda R, and Mangadoddy N, Sep Purif Technol. http://dx.doi.org/10.1016/j.seppur.2016.10.026.

  34. Delgadillo J A, and Rajamani R K, Int J Miner Process 77 (2005) 217.

    Article  Google Scholar 

  35. Narasimha M, Brennan M, and Holtham P N, Int J Miner Process 80 (2006) 1.

    Article  Google Scholar 

  36. Manninen M, Taivassalo V, and Kallio S, On the Mixture Model for Multiphase Flow, VTT Publications, Finland (1996).

    Google Scholar 

  37. Aurelien D, Eric C, Florent B, and Kumar M A, Miner Eng 31 (2012) 32.

    Article  Google Scholar 

  38. Davidson M R, A Numerical Model of LiquidSolid Flow in a Hydrocyclone with High Solids Fraction, International Symposium Numerical methods for Multiphase flows, Nevada (1994).

  39. Kraipech W, Nowakowski A V, Dyakowski T, and Suksangpanomrung A, Chem Eng J 111 (2005) 189.

    Article  Google Scholar 

  40. Buwa V V, and Ranade V V, Chem Eng Sci 57 (2002) 4715.

    Article  Google Scholar 

  41. Pfleger D, and Becker S, Chem Eng Sci 56 (2001) 1737.

    Article  Google Scholar 

  42. Finch J A, and Dobby G S, Int J Miner Process 33 (1991) 343.

    Article  Google Scholar 

  43. Ityokumbul M T, Miner Eng 5 (1992) 685.

    Article  Google Scholar 

  44. Johansson G, and Pugh R J, Int J Miner Process 34 (1992) 1.

    Article  Google Scholar 

  45. Ekambara K, and Dhotre M T, Nucl Eng Des 240 (2010) 963.

    Article  Google Scholar 

  46. Tabib M V, Roy S A, and Joshi J B, Chem Eng J 139 (2008) 589.

    Article  Google Scholar 

  47. Buwa V V, Deo D S, and Ranade V V, Int J Multiphase Flow 32 (2006) 864.

    Article  Google Scholar 

  48. ANSYS Fluent 14 Theory Guide, USA (2011).

  49. Saffman P G, J Fluid Mech 22 (1965) 385.

    Article  Google Scholar 

  50. Schiller L, and Naumann A, Z Ver Dtsch Ing 77 (1935) 318.

    Google Scholar 

  51. Richardson J F, and Zaki W N, Trans Inst Chem Eng 32 (1954) 35.

    Google Scholar 

  52. Mei R, Int J Multiphase Flow 18 (1992) 145.

    Article  Google Scholar 

  53. Narasimha M, Mainza A N, Holtham P N, Powell M S, and Brennan M, Int J Miner Process 133 (2014) 1.

    Article  Google Scholar 

  54. Ishii M, and Mishima K, Nucl Eng Des 82 (1984) 107.

    Article  Google Scholar 

  55. Ishii M, and Zuber N, AlChE J 25 (1979) 843.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narasimha Mangadoddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakamalla, T.R., Vadlakonda, B., Aketi, V.A. et al. Multiphase CFD Modelling of Mineral Separators Performance: Validation Against Tomography Data. Trans Indian Inst Met 70, 323–340 (2017). https://doi.org/10.1007/s12666-016-0995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0995-4

Keywords

Navigation