Advertisement

Multiphase CFD Modelling of Mineral Separators Performance: Validation Against Tomography Data

  • Teja Reddy Vakamalla
  • Balraju Vadlakonda
  • V. Asha Kumari Aketi
  • Narasimha Mangadoddy
Technical Paper
  • 226 Downloads

Abstract

This paper aims on application of computational fluid dynamic (CFD) modelling on two-phase and multiphase flows in 75 mm conventional hydrocyclone, 350 mm dense medium cyclone (DMC) and 100 mm diameter laboratory column flotation. Along with classification experiments, a dual-planar high speed electrical resistance tomography (ERT) is used to measure the internal flow dynamics in situ in 75 mm hydrocyclone and column flotation at different operating conditions. Experiments are carried out in 75 mm hydrocyclone for different operational parameters and feed solids content varying in the range of 0–30 wt%. Results are presented in terms of the air core diameter and solids volume fraction contours using Maxwell’s conductivity equation. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Similarly, ERT is used to estimate the mean gas hold-up and radial distribution in order to understand the hydrodynamics of the column flotation. The effect of air superficial velocity and liquid flow rate on gas hold-up is discussed. Algebraic slip mixture model modified with lift, drag and rheology is used to predict the air core size, the solid concentration distribution and classification performance for the hydrocyclone. Validation of air core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted. The CFD predicted air core radius and medium segregation in the DMC is validated against literature based gamma ray tomography data. Further discrete phase model (DPM) is used to track and measure the residence times of different size and density coal particles. CFD predicted gas hold-up in the column flotation is also validated against in-house measured ERT and imaging data.

Keywords

Hydrocyclone Dense medium cyclone Column Computational fluid dynamics Tomography 

References

  1. 1.
    Bradley D, The Hydrocyclone, Pergamon Press Ltd, London 1965.Google Scholar
  2. 2.
    Honaker R Q, and Mohanty M K, Miner Eng 9 (1996) 931.CrossRefGoogle Scholar
  3. 3.
    Jena M S, Biswal S K, Das S P, and Reddy P S R, Fuel Process Technol 89 (2008) 1409.CrossRefGoogle Scholar
  4. 4.
    Chu K W, Wang B, Yu A B, Vince A, Barnett G D, and Barnett P J, Powder Technol 193 (2009) 235.CrossRefGoogle Scholar
  5. 5.
    Cullivan J C, Williams R A, and Cross C R, Trans I Chem 81 (2003) 455.CrossRefGoogle Scholar
  6. 6.
    Narasimha M, Brennan M S, Holtham P N, and Napier-Munn T J, Miner Eng 20 (2007) 414.CrossRefGoogle Scholar
  7. 7.
    Vakamalla T R, Kumbhar K S, Gujjula R, and Mangadoddy N, Sep Purif Technol 138 (2014) 104.CrossRefGoogle Scholar
  8. 8.
    Narasimha M, Brennan M S, and Holtham P N, Miner Eng 39 (2012) 173.CrossRefGoogle Scholar
  9. 9.
    Narasimha M, Sripriya R, and Banerjee P K, Int J Miner Process 75 (2005) 53.CrossRefGoogle Scholar
  10. 10.
    Delnoij E, Westerweel J, Deen N G, Kuipers J A M, and van Swaaij W P M, Chem Eng Sci 54 (1999) 5159.CrossRefGoogle Scholar
  11. 11.
    Marins L P M, Duarte D G, Loureiro J B R, Moraes C A C, and Freire A P S, J Pet Sci Technol 70 (2010) 168.Google Scholar
  12. 12.
    Hsieh K T, and Rajamani R K, Int J Miner Process 22 (1988) 223.CrossRefGoogle Scholar
  13. 13.
    Subramanian V J, Measurement of Medium Segregation in the Dense Medium Cyclone using Gamma-Ray Tomography, JKMRC, University of Queensland, Brisbane (2002).Google Scholar
  14. 14.
    Rakesh A, Kumar Reddy V T S R, and Narasimha M, Chem Eng Technol 37 (2014) 795.CrossRefGoogle Scholar
  15. 15.
    Wang M, Flow Meas Instrum 16 (2005) 183.CrossRefGoogle Scholar
  16. 16.
    Williams R A, Jia X, West R M, Climpson N, Kostuci J A, and Payton D, Miner Eng 12 (1999) 1245.CrossRefGoogle Scholar
  17. 17.
    Gutiérreza J A, Dyakowski T, Beck M S, and Williams R A, Powder Technol 108 (2000) 180.CrossRefGoogle Scholar
  18. 18.
    O’Hern T J, Torczynski J R, Ceccio S L, Tassin A L, Chahine G L, Duraiswami R, and Sarkar K, Development of an Electrical Impedance Tomography System for an AirWater Vertical Bubble Column, Forum on Measurement Techniques in Multiphase Flows, ASME IMEC&E, San Francisco, CA (1995).Google Scholar
  19. 19.
    Warsito W, and Fan L S, Chem Eng Sci 56 (2001) 6455.CrossRefGoogle Scholar
  20. 20.
    Radman J R, Langlois R, Leadbeater T, Finch J, Rowson N, and Waters K, Miner Eng 62 (2014) 142.CrossRefGoogle Scholar
  21. 21.
    West R M, Jia X, and Williams R A, Chem Eng Commun 175 (1999) 71.CrossRefGoogle Scholar
  22. 22.
    Maxwell J C, A Treatise on Electricity and Magnetism, Calender Press, Oxford (1881).Google Scholar
  23. 23.
    Jin H, Wang M, and Williams R A, Chem Eng J 130 (2007) 179.CrossRefGoogle Scholar
  24. 24.
    Kelsall D F, Trans Inst Chem Eng 30 (1952) 87.Google Scholar
  25. 25.
    Svarovsky L, Hydrocyclones, Holt, Rinehart and Winson Ltd., London (1984).Google Scholar
  26. 26.
    Dabir B, Mean Velocity Measurements in a 3 Hydrocyclone Using Laser Doppler Anemometry, Department of Chemical Engineering, Michigan State University, Michigan (1983).Google Scholar
  27. 27.
    Luo Q, Deng C, Xu J, Yu L, and Xiong G, Int J Miner Process 25 (1989) 297.CrossRefGoogle Scholar
  28. 28.
    Zhou N, Gao Y, An W, and Yang M, Chem Eng J 157 (2010) 73.CrossRefGoogle Scholar
  29. 29.
    Williams R A, Dickin F, Gutiérreza J A, Dyakowski T, and Beck M S, Control Eng Pract 5 (1997) 253.CrossRefGoogle Scholar
  30. 30.
    Dyakowski T, and Williams B, Powder Technol 87 (1996) 43.CrossRefGoogle Scholar
  31. 31.
    Wood C J, A Performance Model for Coal-Washing Dense Medium Cyclones, University of Queensland, Australia (1990).Google Scholar
  32. 32.
    Vakamalla T R, and Mangadoddy N, Powder Technol 277 (2015) 275.CrossRefGoogle Scholar
  33. 33.
    Vakamalla T R, Koruprolu V B R, Arugonda R, and Mangadoddy N, Sep Purif Technol. http://dx.doi.org/10.1016/j.seppur.2016.10.026.
  34. 34.
    Delgadillo J A, and Rajamani R K, Int J Miner Process 77 (2005) 217.CrossRefGoogle Scholar
  35. 35.
    Narasimha M, Brennan M, and Holtham P N, Int J Miner Process 80 (2006) 1.CrossRefGoogle Scholar
  36. 36.
    Manninen M, Taivassalo V, and Kallio S, On the Mixture Model for Multiphase Flow, VTT Publications, Finland (1996).Google Scholar
  37. 37.
    Aurelien D, Eric C, Florent B, and Kumar M A, Miner Eng 31 (2012) 32.CrossRefGoogle Scholar
  38. 38.
    Davidson M R, A Numerical Model of LiquidSolid Flow in a Hydrocyclone with High Solids Fraction, International Symposium Numerical methods for Multiphase flows, Nevada (1994).Google Scholar
  39. 39.
    Kraipech W, Nowakowski A V, Dyakowski T, and Suksangpanomrung A, Chem Eng J 111 (2005) 189.CrossRefGoogle Scholar
  40. 40.
    Buwa V V, and Ranade V V, Chem Eng Sci 57 (2002) 4715.CrossRefGoogle Scholar
  41. 41.
    Pfleger D, and Becker S, Chem Eng Sci 56 (2001) 1737.CrossRefGoogle Scholar
  42. 42.
    Finch J A, and Dobby G S, Int J Miner Process 33 (1991) 343.CrossRefGoogle Scholar
  43. 43.
    Ityokumbul M T, Miner Eng 5 (1992) 685.CrossRefGoogle Scholar
  44. 44.
    Johansson G, and Pugh R J, Int J Miner Process 34 (1992) 1.CrossRefGoogle Scholar
  45. 45.
    Ekambara K, and Dhotre M T, Nucl Eng Des 240 (2010) 963.CrossRefGoogle Scholar
  46. 46.
    Tabib M V, Roy S A, and Joshi J B, Chem Eng J 139 (2008) 589.CrossRefGoogle Scholar
  47. 47.
    Buwa V V, Deo D S, and Ranade V V, Int J Multiphase Flow 32 (2006) 864.CrossRefGoogle Scholar
  48. 48.
    ANSYS Fluent 14 Theory Guide, USA (2011).Google Scholar
  49. 49.
    Saffman P G, J Fluid Mech 22 (1965) 385.CrossRefGoogle Scholar
  50. 50.
    Schiller L, and Naumann A, Z Ver Dtsch Ing 77 (1935) 318.Google Scholar
  51. 51.
    Richardson J F, and Zaki W N, Trans Inst Chem Eng 32 (1954) 35.Google Scholar
  52. 52.
    Mei R, Int J Multiphase Flow 18 (1992) 145.CrossRefGoogle Scholar
  53. 53.
    Narasimha M, Mainza A N, Holtham P N, Powell M S, and Brennan M, Int J Miner Process 133 (2014) 1.CrossRefGoogle Scholar
  54. 54.
    Ishii M, and Mishima K, Nucl Eng Des 82 (1984) 107.CrossRefGoogle Scholar
  55. 55.
    Ishii M, and Zuber N, AlChE J 25 (1979) 843.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2016

Authors and Affiliations

  1. 1.Indian Institute of Technology HyderabadKandiIndia

Personalised recommendations