Skip to main content
Log in

Effect of Continuous Cooling Rate on Transformation Characteristic in Microalloyed Low Carbon Bainite Cryogenic Pressure Vessel Steel

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Continuous cooling transformation behavior of a low carbon bainite microalloyed cryogenic pressure vessel steel was analyzed to explore transformation mechanism of super-cooled austenite on MMS-300 thermomechanical simulator. Microstructure transformation laws of steel at various cooling rates were determined by means of dilatometric measurement and microstructure observation. The results showed that the bainite microstructure was formed in broad range of cooling rate 5–30 °C/s. The martensitic transformation existed above 50 °C/s and the martensitic microstructure was dominated above 150 °C/s. The martensitic transformation temperature was first increased and then decreased with the increase of cooling rate in the range of 1–30 °C/s and the final transformation of bainite and martensite would move toward higher temperature at higher cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kong J H, and Xie C S, Mater Design 27 (2006) 1169.

    Article  Google Scholar 

  2. Kong X W, and Qiu C L, J Mater Sci Technol 29 (2013) 446.

    Article  Google Scholar 

  3. Mackerle J, Int J Press Vessels Pip 82 (2005) 571.

    Article  Google Scholar 

  4. Zhang Z M, Cai Q W, Yu W, Li X L, and Wang L D, J Iron Steel Res Int 19 (2012) 73.

    Google Scholar 

  5. Olasolo M, Uranga P, Rodriguez J, and López B, Mat Sci Eng A 528 (2011) 2559.

    Article  Google Scholar 

  6. Yin S B, Sun X J, Liu Q Y, and Zhang Z B, J Iron Steel Res Int 17 (2010) 43.

    Article  Google Scholar 

  7. Zhang C, Cai D, Wang Y, Liu M, Liao B, and Fan Y, Mater Charact 59 (2008) 1638.

    Article  Google Scholar 

  8. Balart M, Davis C, and Strangwood M, Mat Sci Eng A 284 (2000) 1.

    Article  Google Scholar 

  9. Deflorian F, and Rossi S, Eng Fail Anal 9 (2002) 541.

    Article  Google Scholar 

  10. Zhao J W, Jiang Z Y, Kim J S, and Lee C S, Mater Design 49 (2013) 252.

    Article  Google Scholar 

  11. Xu G, Wan L, Yu S F, Liu L, and Luo F, Mater Lett 62 (2008) 3978.

    Article  Google Scholar 

  12. Jun H J, Kang J S, Seo D H, Kang K B, and Park C G, Mat Sci Eng A 422 (2006) 157.

    Article  Google Scholar 

  13. Castro M, and Romero R, Scr Mater 42 (1999) 157.

    Article  Google Scholar 

  14. Burke J, The Kinetics of Phase Transformations in Metals, Pergamon Press, Long Island (1965).

    Google Scholar 

  15. Duan Z T, Li Y M, Zhu F X, and Zhang H Y, Adv Mater Res 335 (2011) 595.

    Article  Google Scholar 

  16. Wang J, Van der Wolk P J, and Van der Zwaag S, J Mater Sci 35 (2000) 4393.

    Article  Google Scholar 

  17. Duan L W, Feng Y L, and Qi X J, Adv Mater Res 418 (2012) 523.

    Google Scholar 

  18. Ferry M, Thompson M, and Manohar P, ISIJ Int 42 (2002) 86.

    Article  Google Scholar 

  19. Araki T, Enomoto M, and Shibata K, Mater Trans JIM 32 (1991) 729.

    Article  Google Scholar 

  20. Gottstein G, Marx V, and Sebald R, J Shanghai Jiaotong Univ 5 (2000) 49.

    Google Scholar 

  21. Aaronson H I, Reynolds W T, and Purdy G R, Metall Mater Trans A 37a (2006) 1731.

    Article  Google Scholar 

  22. Bhadeshia H, Keehan E, Karlsson L, and Andrén H O, Trans Indian Inst Metals 59 (2006) 689.

    Google Scholar 

  23. Thompson S W, Colvin D J, and Krauss G, Metall Trans A 21 (1990) 1493.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 51271051 and No. 50634030), and the Research Foundation of Chongqing University of Science & Technology (No. CK2013Z16 and No. CK2014Z20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, L., Zhou, X. et al. Effect of Continuous Cooling Rate on Transformation Characteristic in Microalloyed Low Carbon Bainite Cryogenic Pressure Vessel Steel. Trans Indian Inst Met 69, 817–821 (2016). https://doi.org/10.1007/s12666-015-0564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0564-2

Keywords

Navigation