The spatial distribution and expansion of subsided wetlands induced by underground coal mining in eastern China

Abstract

A large number of subsided wetlands have formed in eastern China in areas with high-intensity mining. However, data are not currently available to indicate their spatial distribution and expansion in the past thirty years. This paper uses a modified normalized difference water index (mNDWI) and a maximum between-cluster variance (OTSU) image segmentation algorithm to extract the subsided wetlands in mining areas with high ground-water levels of eastern China from 1988 to 2018 based on Google Earth Engine. The results show that the overall accuracy of the extraction of subsided wetlands is 98%; the Kappa coefficient reached 0.81. The total area of subsided wetland in 2018 was 26,034.88 ha, of which 14,290.97 ha was in Anhui Province, accounting for 54.89% of all such wetlands. The spatial extent of subsided wetlands has grown rapidly in the past three decades with the area of subsided wetlands expanding by 11.86 times from 1988 to 2018. The total area of subsided wetlands in the winter of 2018 was 25,296.25 ha, which was smaller than in summer. This indicates that seasonal precipitation affects the spatial extent of subsided wetlands. Although some restoration activities have been successful, most of the subsided wetlands still need active development and management. In conclusion, mNDWI and OTSU image segmentation algorithms could quickly and accurately allow the extraction of the spatial extent of subsided wetlands. Subsided wetlands have strong potential for development in future ecological restoration. The ecosystem services of wetlands and availability of dynamic monitoring technology should be considered important in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. An S, Li H, Guan B, Zhou C, Wang Z, Deng Z, Zhi Y, Liu Y, Xu C, Fang S, Jiang J, Li H (2007) China’s natural wetlands: past problems, current status, and future challenges. Ambio 36(4):335–342. https://doi.org/10.1579/0044-7447(2007)36[335:CNWPPC]2.0.CO;2

    Article  Google Scholar 

  2. Bancheva-Preslavska H, Bezlova D (2018) Communication criteria for conservation and sustainable use of bulgarian wetlands of international importance. J Environ Prot Ecol 19(4):1873–1880

    Google Scholar 

  3. Blanchette M, Lund M (2016) Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Curr Opin Environ Sustain 23:28–34. https://doi.org/10.1016/j.cosust.2016.11.012

    Article  Google Scholar 

  4. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Global Environ Change 26(1):152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002

    Article  Google Scholar 

  5. Darmody RG, Bauer R, Barkley D, Clarke S, Hamilton D (2014) Agricultural impacts of longwall mine subsidence: the experience in Illinois, USA and Queensland, Australia. Int J Coal Sci Technol 1(2):207–212. https://doi.org/10.1007/s40789-014-0026-1

    Article  Google Scholar 

  6. Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65(10):934–941. https://doi.org/10.1071/MF14173

    Article  Google Scholar 

  7. Davranche A, Lefebvre G, Poulin B (2010) Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sens Environ 114(3):552–562. https://doi.org/10.1016/j.rse.2009.10.009

    Article  Google Scholar 

  8. Diao X, Bai Z, Wu K, Zhou D, Li Z (2018) Assessment of mining induced damage to structures using InSAR time series analysis : a case study of Jiulong Mine, China. Environ Earth Sci 77(5):1–14. https://doi.org/10.1007/s12665-018-7353-2

    Article  Google Scholar 

  9. Ding Y, Chan J (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89(1–4):117–142. https://doi.org/10.1007/s00703-005-0125-z

    Article  Google Scholar 

  10. Donchyts G, Baart F, Winsemius H, Gorelick N, Kwadijk J, Van De Giesen N (2016) Earth’s surface water change over the past 30 years. Nat Clim Change 6(9):810–813. https://doi.org/10.1038/nclimate3111

    Article  Google Scholar 

  11. Gardner, R. C., Finlayson, M. (2018). Global wetland outlook: State of the world’s wetlands and their services to people. Secretariat of the Ramsar Convention.

  12. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. https://doi.org/10.1016/j.rse.2017.06.031

    Article  Google Scholar 

  13. Guo A, Li X, Tang X, Xu Y (2011) The change of Tangshan Nanhu City wetland landscape based on multi-level classification method. ICCRD2011–2011 3rd Int Conf Comput Res Develop 2:440–443. https://doi.org/10.1109/ICCRD.2011.5764169

    Article  Google Scholar 

  14. Horwitz P, Finlayson CM (2011) Wetlands as settings for human health: incorporating ecosystem services and health impact assessment into water resource management. Bioscience 61(9):678–688. https://doi.org/10.1525/bio.2011.61.9.6

    Article  Google Scholar 

  15. Hu Z, Gu H (1995) Reclamation planning for abandoned mining subsidence lands in Eastern China: a case study. Int J Surf Min Reclam Environ 9(3):129–132. https://doi.org/10.1080/09208119508964733

    Article  Google Scholar 

  16. Hu X, Li X (2019) Information extraction of subsided cultivated land in high—groundwater—level coal mines based on unmanned aerial vehicle visible bands. Environ Earth Sci 78(14):1–11. https://doi.org/10.1007/s12665-019-8417-7

    Article  Google Scholar 

  17. Hu Z, Xu X, Zhao Y (2012) Dynamic monitoring of land subsidence in mining area from multi-source remote-sensing data—a case study at Yanzhou, China. Int J Remote Sens 33(17):5528–5545. https://doi.org/10.1080/01431161.2012.663113

    Article  Google Scholar 

  18. Hu Z, Yang G, Xiao W, Li J, Yang Y, Yu Y (2014) Farmland damage and its impact on the overlapped areas of cropland and coal resources in the eastern plains of China. Resour Conserv Recycl 86:1–8. https://doi.org/10.1016/j.resconrec.2014.01.002

    Article  Google Scholar 

  19. Hu Z, Fu Y, Xiao W, Zhao Y, Wei T (2015) Ecological restoration plan for abandoned underground coal mine site in Eastern China. Int J Min Reclam Environ 29(4):316–330. https://doi.org/10.1080/17480930.2014.1000645

    Article  Google Scholar 

  20. Hu S, Niu Z, Chen Y, Li L, Zhang H (2017) Global wetlands: potential distribution, wetland loss, and status. Sci Total Environ 586:319–327. https://doi.org/10.1016/j.scitotenv.2017.02.001

    Article  Google Scholar 

  21. Kumar L, Mutanga O (2018) Google earth engine applications since inception: usage, trends, and potential. Remote Sensing 10(10):1–15. https://doi.org/10.3390/rs10101509

    Article  Google Scholar 

  22. Lan J, Zeng Y (2013) Multi-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogram. Optik 124(18):3756–3760. https://doi.org/10.1016/j.ijleo.2012.11.023

    Article  Google Scholar 

  23. Li C, Zhang Y, Zha D, Yang S, Huang ZYX, de Boer WF (2019) Assembly processes of waterbird communities across subsidence wetlands in China: a functional and phylogenetic approach. Divers Distrib 25:1118–1129. https://doi.org/10.1111/ddi.12919

    Article  Google Scholar 

  24. McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432. https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  25. Meng W, He M, Hu B, Mo X, Li H, Liu B, Wang Z (2017) Status of wetlands in China: a review of extent, degradation, issues and recommendations for improvement. Ocean Coast Manag 146:50–59. https://doi.org/10.1016/j.ocecoaman.2017.06.003

    Article  Google Scholar 

  26. Minderhoud PSJ, Coumou L, Erban LE, Middelkoop H, Stouthamer E, Addink EA (2018) The relation between land use and subsidence in the Vietnamese Mekong delta. Sci Total Environ 634:715–726. https://doi.org/10.1016/j.scitotenv.2018.03.372

    Article  Google Scholar 

  27. Mitsch WJ, Zhang L, Waletzko E, Bernal B (2014) Validation of the ecosystem services of created wetlands: two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecol Eng 72:11–24. https://doi.org/10.1016/j.ecoleng.2014.09.108

    Article  Google Scholar 

  28. Mui A, He Y, Weng Q (2015) An object-based approach to delineate wetlands across landscapes of varied disturbance with high spatial resolution satellite imagery. ISPRS J Photogramm Remote Sens 109:30–46. https://doi.org/10.1016/j.isprsjprs.2015.08.005

    Article  Google Scholar 

  29. Najafi Z, Pourghasemi H, Ghanbarian G, Shamsi F (2020) Land-subsidence susceptibility zonation using remote sensing, GIS, and probability models in a Google Earth Engine platform. Environ Earth Sci 79:491. https://doi.org/10.1007/s12665-020-09238-

    Article  Google Scholar 

  30. Otsu N (1996) A threshold selection method from gray-level histograms. IEEE Trans on Syst, Man Cybernet 9(1):62–66

    Article  Google Scholar 

  31. Przylucka M, Herrera G, Graniczny M, Colombo D, Béjar-Pizarro M (2015) Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with TerraSAR-X data: Bytom City (Poland). Remote Sensing 7(5):5300–5328. https://doi.org/10.3390/rs70505300

    Article  Google Scholar 

  32. Pujol FA, Pujol M, Rizo R, Pujol MJ (2011) On searching for an optimal threshold for morphological image segmentation. Pattern Anal Appl 14(3):235–250. https://doi.org/10.1007/s10044-011-0215-0

    Article  Google Scholar 

  33. Verhoeven JTA (2014) Wetlands in Europe: perspectives for restoration of a lost paradise. Ecol Eng 66:6–9. https://doi.org/10.1016/j.ecoleng.2013.03.006

    Article  Google Scholar 

  34. Wang H, Dong K, Yang B, Ma Z (2009) Urban wetland ecosystem: function, challenge and strategy. 2nd International conference on environmental and computer science. ICECS. https://doi.org/10.1109/ICECS.2009.51

    Article  Google Scholar 

  35. Wang S, Baig M, Zhang L, Jiang H, Ji Y, Zhao H, Tian J (2015) A simple enhanced water index (EWI) for percent surface water estimation using landsat data. IEEE J Sel Top Appl Earth Obs Remote Sens 8(1):90–97. https://doi.org/10.1109/JSTARS.2014.2387196

    Article  Google Scholar 

  36. Wang L, Wang L, Yin P, Cui H, Liang L, Wang Z (2017) Value assessment of artificial wetland derived from mining subsided lake: a case study of Jiuli Lake wetland in Xuzhou. Sustainability 9(10):1860. https://doi.org/10.3390/su9101860

    Article  Google Scholar 

  37. Xiao W, Hu Z, Li J, Zhang H, Hu J (2011) A study of land reclamation and ecological restoration in a resource-exhausted city—a case study of Huaibei in China. Int J Min Reclam Environ 25(4):332–341. https://doi.org/10.1080/17480930.2011.608888

    Article  Google Scholar 

  38. Xie K, Zhang Y, Yi Q, Yan J (2013) Optimal resource utilization and ecological restoration of aquatic zones in the coal mining subsidence areas of the Huaibei Plain in Anhui Province, China. Desalination Water Treat 51(19–21):4019–4027. https://doi.org/10.1080/19443994.2013.781096

    Article  Google Scholar 

  39. Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033. https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  40. Xu T, Weng B, Yan D, Wang K, Li X, Bi W, Li M, Cheng X, Liu Y (2019b) Wetlands of international importance: status, threats, and future protection. Int J Environ Res Public Health 16(10):1818. https://doi.org/10.3390/ijerph16101818

    Article  Google Scholar 

  41. Xu J, Zhao H, Yin P, Wu L, Li G (2019a) Landscape ecological quality assessment and its dynamic change in coal mining area: a case study of Peixian. Environ Earth Sci 78(24):708. https://doi.org/10.1007/s12665-019-8747-5

    Article  Google Scholar 

  42. Yang Y, Ren X, Zhang S, Chen F, Hou H (2017) Incorporating ecological vulnerability assessment into rehabilitation planning for a post-mining area. Environ Earth Sci 76(6):1–16. https://doi.org/10.1007/s12665-017-6568-y

    Article  Google Scholar 

  43. Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30(1):39–74. https://doi.org/10.1146/annurev.energy.30.050504.144248

    Article  Google Scholar 

  44. Zhang M, Yuanm X, Guan D, Liu H, Zhang G, Wang K, Zhou L, Wu S, Sun K (2019) Eco-exergy evaluation of new wetlands in the Yanzhou coalfield subsidence areas using structural-dynamic modelling. Mine Water Environ 38:746–756. https://doi.org/10.1007/s10230-019-00628-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate assistance from the Google Earth Engine Development team and the valuable suggestions from anonymous reviewers.

Funding

This study was funded by the Fundamental Research Funds for the Central Universities (Grant No. 2017XKZD14).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuewu Su.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, Y., Su, X. et al. The spatial distribution and expansion of subsided wetlands induced by underground coal mining in eastern China. Environ Earth Sci 80, 112 (2021). https://doi.org/10.1007/s12665-021-09422-y

Download citation

Keywords

  • Environmental monitoring
  • Subsided wetland
  • Google earth engine
  • mNDWI
  • OTSU
  • Remote sensing
  • Mining