Analytical solution of ground and underground vibration subject to spherical charge

Abstract

Considering the geological bodies as a viscoelastic medium, rather than an elastic medium, is more reliable for the issues of blasting vibration because of the damping characteristic of the geological bodies. However, the analytical solution for ground vibration subject to spherical charge in a viscoelastic medium has never been reported yet. In this study, an approximate analytical solution is first proposed to address such a problem. Its accuracy and validity are verified by direct numerical simulation (finite difference method) and extensive experiences in construction. Based on the present analytical solution, the ground and underground vibration characteristics are systematically studied. The results show that both blasting parameters and medium parameters affect the blasting vibration, especially, the viscosity modulus of the medium will significantly change the waveform and amplitude of blasting vibration. The attenuation coefficients for underground and ground vibration vary from 1.4 to 2.0 and 0.7 to 2.0 with the increasing viscosity modulus. This analytical solution provides reliable prediction and analysis for blasting vibration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

source distance in the viscoelastic medium with η1 = 0 MPa·s for figures (ab), η1 = 10 MPa·s for figures (cd), and η1 = 20 MPa·s for figures (ef)

Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Achenbach JD, Thau SA (1974) Wave propagation in elastic solids. J Appl Mech 41(2):544. https://doi.org/10.1115/1.3423344

    Article  Google Scholar 

  2. Ahn JK, Park D (2017) Prediction of near-field wave attenuation due to a spherical blast source. Rock Mech Rock Eng 50(11):3085–3099. https://doi.org/10.1007/s00603-017-1274-3

    Article  Google Scholar 

  3. Baum FA, Orlenko LP, Stanyukovich KP (1975) Physics of an Explosion. Nauka, Moscow (in Russian)

    Google Scholar 

  4. Ben-Menahem A, Cisternas A (1963) The dynamic response of an elastic half-space to an explosion in a spherical cavity. J Math Phys 42(1–4):112–125. https://doi.org/10.1002/sapm1963421112

    Article  Google Scholar 

  5. Blair DP (2010) Seismic radiation from an explosive column. Geophysics 75:E55–E65. https://doi.org/10.1190/1.3294860

    Article  Google Scholar 

  6. Blake FG Jr (1952) Spherical wave propagation in solid media. J Acoust Soc Am 24(2):211–215. https://doi.org/10.1121/1.1906882

    Article  Google Scholar 

  7. Chen SG, Zhao J (1998) A study of UDEC modelling for blast wave propagation in jointed rock masses. Int J Rock Mech Min Sci 35(1):93–99. https://doi.org/10.1016/S0148-9062(97)00322-7

    Article  Google Scholar 

  8. Chen S, Wu J, Zhang Z (2017) Blasting vibration characteristics and PPV calculation formula considering cylindrical charge length. Environm Earth Sci 76(20):674. https://doi.org/10.1007/s1266

    Article  Google Scholar 

  9. Cooper HF Jr, Reiss EL (1966) Reflection of plane viscoelastic waves from plane boundaries. J Acoust Soc Am 39(6):1133–1138. https://doi.org/10.1121/1.1910001

    Article  Google Scholar 

  10. Deng XF, Zhu JB, Chen SG et al (2014) Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses. Tunn Undergr Space Technol 43:88–100. https://doi.org/10.1016/j.tust.2014.04.004

    Article  Google Scholar 

  11. Duvall WI (1953) Strain-wave shapes in rock near explosions. Geophysics 18(2):310–323. https://doi.org/10.1190/1.1437875

    Article  Google Scholar 

  12. Favreau RF (1969) Generation of strain waves in rock by an explosion in a spherical cavity. J Geophys Res 74(17):4267–4280. https://doi.org/10.1029/JB074i017p04267

    Article  Google Scholar 

  13. Gao QD, Lu WB et al (2019) Components and evolution laws of seismic waves induced by vertical-hole blasting. Chinese J Rock Mechan Eng https://doi.org/10.13722/j.cnki.jrme.2018.0824

  14. Hao H, Wu Y, Ma G et al (2001) Characteristics of surface ground motions induced by blasts in jointed rock mass. Soil Dynam Earthquake Eng 21(2):85–98. https://doi.org/10.1016/s0267-7261(00)00104-4

    Article  Google Scholar 

  15. Jiang J, Blair DP, Baird GR (1995) Dynamic response of an elastic and viscoelastic full-space to a spherical source. Int J Numer Anal Meth Geomech 19(3):181–193. https://doi.org/10.1002/nag.1610190303

    Article  Google Scholar 

  16. Kuhlemeyer RL, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mechan Found Div 99(Tech Rpt.

  17. Li HB, Jiang HJ, Zhao J et al (2003) Some problems about safety analysis of rock engineering under dynamic load. Chinese J Rock Mechan Eng 22(11):1887–1891. https://doi.org/10.3321/j.issn:1000-6915.2003.11.028

    Article  Google Scholar 

  18. Li JC, Ma GW, Zhao J (2010) An equivalent viscoelastic model for rock mass with parallel joints. J Geophys Res. https://doi.org/10.1029/2008jb006241

    Article  Google Scholar 

  19. Li XF, Li HB, Li JC, Li ZW (2018a) Research on transient wave propagation across nonlinear joints filled with granular materials. Rock Mech Rock Eng 51(8):2373–2393. https://doi.org/10.1007/s00603-018-1471-8

    Article  Google Scholar 

  20. Li XF, Li HB, Li JC (2018b) Effect of joint thickness on seismic response across a filled rock fracture. Géotechnique Lett 8(3):190–194. https://doi.org/10.1680/jgele.18.00042

    Article  Google Scholar 

  21. Liang Q, An Y, Zhao L et al (2011) Comparative study on calculation methods of blasting vibration velocity. Rock Mech Rock Eng 44(1):93–101. https://doi.org/10.1007/s00603-010-0108-3

    Article  Google Scholar 

  22. Lu W, Luo Y, Chen M et al (2012) An introduction to Chinese safety regulations for blasting vibration. Environm Earth Sci 67(7):1951–1959. https://doi.org/10.1007/s12665-012-1636-9

    Article  Google Scholar 

  23. Lubliner J (1962) (1962) Cylindrical wave in a viscoelastic solid. J Acoust Soc Am 34(11):1706–1710. https://doi.org/10.1121/1.1909100

    Article  Google Scholar 

  24. Lysmer J, Kuhlemeyer RL (1969) Finite element model for infinite medium. J Eng Mech Div ASCE 95:859–887

    Google Scholar 

  25. Ma GW, An XM (2008) Numerical simulation of blasting-induced rock fractures. Int J Rock Mech Min Sci 45(6):966–975. https://doi.org/10.1016/j.ijrmms.2007.12.002

    Article  Google Scholar 

  26. Ma GW, Hao H, Zhou YX (1998) Modeling of wave propagation induced by underground explosion. Comput Geotech 22(3–4):283–303. https://doi.org/10.1016/S0266-352X(98)00011-1

    Article  Google Scholar 

  27. Nateghi R (2011) Prediction of ground vibration level induced by blasting at different rock units. Int J Rock Mech Min Sci 48(6):899–908. https://doi.org/10.1016/j.ijrmms.2011.04.014

    Article  Google Scholar 

  28. Ozer U, Kahriman A, Aksoy M et al (2008) The analysis of ground vibrations induced by bench blasting at Akyol quarry and practical blasting charts. Environ Geol 54(4):737–743. https://doi.org/10.1007/s00254-007-0859-7

    Article  Google Scholar 

  29. Sharpe JA (1942) The production of elastic waves by explosion pressures. I. Theory and empirical field observations. Geophysics 7(2):144–154. https://doi.org/10.1190/1.1445016

    Article  Google Scholar 

  30. Singh PK (2002) Blast vibration damage to underground coal mines from adjacent open-pit blasting. Int J Rock Mechan Mining Sci 39(8):959–973. https://doi.org/10.1016/S1365-1609(02)00098-9

    Article  Google Scholar 

  31. Thiruvenkatachar VR, Viswanathan K, Jeffreys H (1965) Dynamic response of an elastic half-space to time-dependent surface tractions over an embedded spherical cavity. Proc Royal Soc London Series A Mathemat Phys Sci 287(1411):549–567. https://doi.org/10.1098/rspa.1965.0196

    Article  Google Scholar 

  32. Tournat V, Pagneux V, Lafarge D et al (2004) Multiple scattering of acoustic waves and porous absorbing media. Phys Rev E 70(2):026609. https://doi.org/10.1098/rspa.1965.0196

    Article  Google Scholar 

  33. Tripathy GR, Shirke RR, Kudale MD (2016) Safety of engineered structures against blast vibrations: A case study. J Rock Mechan Geotechn Eng 8(2):248–255. https://doi.org/10.1016/j.jrmge.2015.10.007

    Article  Google Scholar 

  34. Wang LL (2007) Foundations of stress waves. Amsterdam: Elsevier Science Ltd 226-227. https://doi.org/10.1016/B978-008044494-9/50014-7

  35. Winkler K, Nur A, Gladwin M (1979) Friction and seismic attenuation in rocks. Nature 277(5697):528. https://doi.org/10.1038/277528a0

    Article  Google Scholar 

  36. Yuan S, Song X, Cai W, Hu Y (2018) Analysis of attenuation and dispersion of Rayleigh waves in viscoelastic media by finite-difference modeling. J Appl Geophys 148:115–126. https://doi.org/10.1016/j.jappgeo.2017.11.010

    Article  Google Scholar 

  37. Zeng YQ, Li HB, Xia X et al (2018) Blast-induced rock damage control in Fangchenggang nuclear power station, China. J Rock Mechan Geotechn Eng 10(5):914–923. https://doi.org/10.1016/j.jrmge.2018.04.010

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of National Natural Science Foundation of China (Grant No. 51439008), and Natural Science Foundation of China (Grant No. 41572307). The authors would like to express our greatest gratitude for these generous supports.

Funding

Key Program of National Natural Science Foundation of China (Grant No. 51439008). Natural Science Foundation of China (Grant No. 41572307).

Author information

Affiliations

Authors

Contributions

Conceptualization: Zhiwen Li. Methodology: Zhiwen Li. Formal analysis and investigation: Zhiwen Li, Haibo Li, Hong Zuo. Writing—original draft preparation: Zhiwen Li. Writing—review and editing: Zhiwen Li, Hong Zuo, Haibo Li.. Funding acquisition: Haibo Li. Resources: Haibo Li. Supervision: Haibo Li.

Corresponding author

Correspondence to Haibo Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, H. & Zuo, H. Analytical solution of ground and underground vibration subject to spherical charge. Environ Earth Sci 80, 116 (2021). https://doi.org/10.1007/s12665-021-09417-9

Download citation

Keywords

  • Spherical charge
  • Blasting vibration
  • Ground and underground
  • Viscoelastic medium
  • Analytic solution