Spatial and seasonal dynamics of water physical–chemical parameters in rivers and lakes of an Argentinian Patagonia basin

Abstract

The Senguer River basin, located in central Argentinian Patagonia, has its headwater in the Andean Range and ends in extra-Andean Patagonian plains. Within this region, the water bodies may be affected by their localization and the climatic and hydrological seasonality. At the lower basin, there are higher temperatures, evaporation and human impact, and lower precipitation and land cover. In addition, rainfall and runoff are higher during the winter and spring, while temperatures, wind intensity, and evaporation are higher during the summer and autumn. However, the characteristics and dynamics of the water bodies of this basin are not well known. This work aims to study the physical–chemical characteristics of the rivers and lakes of the Senguer River basin to establish their spatial and seasonal variations. During 1 year, seasonally, it was measured the concentration of total, organic and inorganic suspended sediments (TSS, OSS, ISS, respectively), total dissolved solids (TDS), pH, dissolved oxygen (DO), water temperature, chlorophyll a (Chl a), total phosphorus and Secchi disk depth. At the lower basin, water bodies present higher TSS, TDS, Chl a, and turbidity. The seasonal variability has a high impact on TSS (higher on the spring) and water temperature (higher on summer); however, the effect on the other variables is lower relative to the importance of the localization. The two extremes of the basin, Fontana Lake (Fo; located in the Andean zone) and Musters Lake (Mu; located extra-Andean plains), differed in TSS (Fo = 0.4 ± 0.3 mg L−1; Mu = 4.3 ± 2.8 mg L−1), TDS (Fo = 14 ± 1 mg L−1; Mu = 278 ± 9 mg L−1), water transparency (Fo = 11.8 ± 1.2 m; Mu = 3.1 ± 2.4 mg L−1), and Chl a (Fo = 0.42 ± 0.17 μg L−1; Mu = 3.93 ± 2.23 μg L−1). Our results allow a better understanding of the differences between the Andean and extra-Andean water bodies in Patagonia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Donk EV, Weyhenmeyer GA, Winderl M (2009) Lakes as sentinels of climate change. Limnol Ocean 54(6):2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283

    Article  Google Scholar 

  2. Allan JD (2004) Landscapes and riverscapes: the influence of land-use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122

    Article  Google Scholar 

  3. Ambrosetti W, Barbanti L, Sala N (2003) Residence time and physical processes in lakes. J Limnol 62:1–15

    Article  Google Scholar 

  4. American Public Health Association, Eaton AD, Water Environment Federation, American Water Works Association (2005) Standard methods for the examination of water and wastewater. 21st edn. APHA-AWWA-WEF, Washington, D. C

  5. Atekwana EA, Atekwana EA, Rowe RS, Werkema DD Jr, Legall FD (2004) The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. J Appl Geophys 56:281–294. https://doi.org/10.1016/j.jappgeo.2004.08.003

    Article  Google Scholar 

  6. Bahamonde H, Peri PL (2012) Calidad de agua en ríos asociados a uso silvopastoril de ñire en Patagonia sur, Argentina. In: Arroquy J, Ledesma R, Roldán S, Gómez A, Peri P (eds) Actas 2do Congreso Nacional de Sistemas Silvopastoriles: una oportunidad para el desarrollo sustentable. INTA EEA, Santiago del Estero

    Google Scholar 

  7. Baigun C (2001) Ecología pesquera de lagos y embalses patagónicos (Argentina). Dissertation, Universidad de Buenos Aires

  8. Bartram J, Balance R (1996) Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programs. World Health Organization, London

    Google Scholar 

  9. Berry W, Rubinstein N, Melzian B, Hill B (2003) The biological effects of suspended and bedded sediment (SABS) in aquatic systems: a review (informe técnico). US Environmental Protection Agency, National Health and Environmental Health Effects Laboratory. https://www.epa.gov/sites/production/files/2015-10/documents/sediment-appendix1.pdf. Accessed 15 Apr 2019

  10. Bhateria R, Jain D (2016) Water quality assessment of lake water: a review. Sustain Water Resour Manag 2:161–173. https://doi.org/10.1007/s40899-015-0014-7

    Article  Google Scholar 

  11. Bilotta GS, Brazier RE (2008) Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42:2849–2861. https://doi.org/10.1016/j.watres.2008.03.018

    Article  Google Scholar 

  12. Chapman PM, Hayward A, Faithful J (2017) Total suspended solids effects on freshwater lake biota other than fish. Bull Environ Contam Toxicol 99(4):423–427. https://doi.org/10.1007/s00128-017-2154-y

    Article  Google Scholar 

  13. Chien H, Pierce K (2018) Impacts of changed stream flow on selected water quality parameters in the upper Esopus Creek watershed of New York, USA. J Geogr Earth Sci 6(1):71–78. https://doi.org/10.15640/jges.v6n1a5

    Article  Google Scholar 

  14. Cobos JC, Panza J (2003) Hoja geológica 4769-IV, El Pluma (1:250.000). Servicio Geológico Minero Argentino, Ciudad Autónoma de Buenos Aires

    Google Scholar 

  15. Código Alimentario Argentino (CAA) (2007) Agua potable de suministro público y agua potable de uso domiciliario. http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_XII.pdf. Accessed 19 May 2019

  16. Coronato A, Mazzoni E, Vázquez M, Coronato F (2017) Patagonia: una síntesis de su geografía física, 1st edn. Universidad Nacional de la Patagonia Austral, Río Gallegos

    Google Scholar 

  17. Diaz M, Pedrozo F, Baccala N (2000) Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina). Lake Reserv Manag 5:213–229. https://doi.org/10.1046/j.1440-1770.2000.00118.x

    Article  Google Scholar 

  18. Diaz M, Pedrozo F, Reynolds C, Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state in Patagonian lakes. Limnologica 33(1):17–27. https://doi.org/10.1016/j.limno.2006.08.006

    Article  Google Scholar 

  19. Drago R, Quiros R (1996) Thee hydrochemistry of the inland waters of Argentina: a review. Int J Salt Lake Res 4:315–325

    Article  Google Scholar 

  20. [EPA] Environmental Protection Agency (1986) Quality criteria for water. Office of Water Regulations and Standards, Washington, DC

    Google Scholar 

  21. Environmental Protection Agency (EPA) (2012) Conductivity. In water: monitoring and assessment. https://archive.epa.gov/water/archive/web/html/vms59.html. Accessed 17 May 2019

  22. Fee EJ (1976) The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: implications for primary production estimates. Limnol Oceanogr 21:767–783. https://doi.org/10.4319/lo.1976.21.6.0767

    Article  Google Scholar 

  23. Gardolinski PCF, Hanrahan G, Achterberg EC, Gledhill M, Tappin AD, House WA, Worsfold PJ (2001) Comparison of sample storage protocols for the determination of nutrients in natural waters. Water Res 35(15):3670–3678. https://doi.org/10.1016/S0043-1354(01)00088-4

    Article  Google Scholar 

  24. González Díaz EF, Di Tommaso I (2014) Paleogeoformas lacustres en los lagos Musters y Colhué Huapí, su relación genética con un paleolago Sarmiento previo, centro sur del Chubut. Rev Asoc Geol Argent 71(3):416–426

    Google Scholar 

  25. Horne AJ, Goldman CR (1994) Limnology, 2nd edn. McGraw-Hill, New York

  26. Idso SB, Gilbert RG (1974) On the universality of the Poole and Atkins Secchi disk-light extinction equation. J Appl Ecol 11:399–401. https://doi.org/10.2307/2402029

    Article  Google Scholar 

  27. Instituto Nacional de Estadística y Censo, República Argentina (INDEC) (2001) Censo Nacional de Población, Hogares y Viviendas. https://www.indec.gov.ar/nivel3_default.asp?id_tema_1=2&id_tema_2=41. Accessed 15 Apr 2019

  28. Instituto Nacional de Estadística y Censo, República Argentina (INDEC) (2010) Censo Nacional de Población, Hogares y Viviendas. https://www.indec.gov.ar/nivel3_default.asp?id_tema_1=2&id_tema_2=41. Accessed 15 Apr 2019

  29. Izaguirre I (1991) Fitoplancton de distintos ambientes acuaticos continentales de la República Argentina: estructura, dinámica y tipificación. Dissertation, Universidad de Buenos Aires

  30. Izaguirre I, Saad JF (2014) Phytoplankton from natural water bodies of the Patagonian Plateau. Fundam Appl Limnol 65:309–319. https://doi.org/10.1127/1612-166X/2014/0065-0048

    Article  Google Scholar 

  31. Izaguirre I, del Giorgio P, O’Farrell I, Tell G (1990) Clasificación de 20 cuerpos de agua Andino- Patagonicos (Argentina) en base a la estructura del fitoplancton estival. Cryptogam Algol 11:31–46

    Google Scholar 

  32. Izaguirre I, Saad JF, Schiaffino MR, Vinocur A, Tell G, Sánchez ML, Allende L, Sinistro R (2016) Drivers of phytoplankton diversity in Patagonian and Antarctic lakes across a latitudinal gradient (2150 km): the importance of spatial and environmental factors. Hydrobiologia 764(1):157–170. https://doi.org/10.1007/s10750-015-2269-2

    Article  Google Scholar 

  33. Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. Climate change 2007. Impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  34. Land De Castello R (1981) Algunos aspectos limnologicos abioticos de las cuencas de los rios Limay y Neuquén, con especial referencia al embalse Ramos Mexia. Ecosur 8(16):1–27

    Google Scholar 

  35. Leach TH, Beisner BE, Carey CC, Pernica P, Rose KC, Huot Y, Brentrup JA, Domaizon I, Grossart H, Ibelings BW, Jacquet S, Kelly PT, Rusak JA, Stockwell JD, Straile D, Verburg P (2018) Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: the relative importance of light and thermal stratification. Limnol Oceanogr 63:628–646. https://doi.org/10.1002/lno.10656

    Article  Google Scholar 

  36. Loucks DP, van Beek E (2017) Water resources planning and management: an overview. In: Loucks DP, van Beek E (eds) Water resource systems planning and management. Springer, Cham, pp 20–49. https://doi.org/10.1007/978-3-319-44234-1_1

    Google Scholar 

  37. Madariaga M (2007). Interacción entre ambiente y población en San Carlos de Bariloche. INTA, Bariloche. http://www.concejobariloche.gov.ar/index.php/documentacion/387-interaccion-entre-ambiente-y-poblacion-en-san-carlos-de-bariloche/file. Accessed 15 Apr 2019

  38. Masi CI, Miserendino ML (2009) Usos de la tierra y distribución de la materia orgánica particulada béntica en ríos de montaña (Patagonia, Argentina). Ecol Austral 19(3):185–196

    Google Scholar 

  39. Mateo-Sagasta J, Burke J (2010) Agriculture and water quality interactions: a global overview, SOLAW background thematic report-TR08. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), Rome. http://www.fao.org/3/a-bl092e.pdf. Accessed 15 June 2019

  40. Milner VS, Yarnell SM, Peek RA (2019) The ecological importance of unregulated tributaries to macroinvertebrate diversity and community composition in a regulated river. Hydrobiologia 829:291–305. https://doi.org/10.1007/s10750-018-3840-4

    Article  Google Scholar 

  41. Ministerio de Ambiente y Control del Desarrollo Sustentable de Chubut (ACDS) (2014) Monitoreo de los recursos hídricos en la cuenca del Río Senguer. http://www.chubut.gov.ar/portal/wp-organismos/ambiente/wp-content/uploads/sites/8/2014/10/senguer.pdf. Accessed 25 Mar 2019

  42. Miserendino ML, Masi CI (2010) The effects of land-use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecol Indic 10(2):311–319. https://doi.org/10.1016/j.ecolind.2009.06.008

    Article  Google Scholar 

  43. Miserendino ML, Brand C, Di Prinzio C (2008) Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollut 194(1):91–110. https://doi.org/10.1007/s11270-008-9701-4

    Article  Google Scholar 

  44. Miserendino ML, Casaux R, Archangelsky M, Di Prinzio CY, Brand C, Kutschker AM (2011) Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Sci Total Environ 409(3):572–584. https://doi.org/10.1016/j.scitotenv.2010.10.034

    Article  Google Scholar 

  45. Moeller HV, Laufkötter C, Sweeney EM, Johnson MD (2019) Light-dependent grazing can drive formation and deepening of deep chlorophyll maxima. Nat Commun 10:1978. https://doi.org/10.1038/s41467-019-09591-2

    Article  Google Scholar 

  46. Monbet P, McKelvie ID (2007) Phosphates. In: Nollet L (ed) Handbook of water analysis, 2nd edn. CRC Press Taylor and Francis Group, New York, pp 219–252

    Google Scholar 

  47. Navalon S, Alvaro M, Garcia H (2011) Analysis of organic compounds in an urban wastewater treatment plant effluent. Environ Technol 32(3):295–306. https://doi.org/10.1080/09593330.2010.497501

    Article  Google Scholar 

  48. Organización para la Cooperación y el Desarrollo Económico (OCDE) (1982) Valores límites de la OCDE para un sistema abierto de clasificación trófica. In: Ryding SO, Rast W (eds) El control de la eutrofización en lagos y pantanos. Ediciones Pirámide, Madrid

    Google Scholar 

  49. Palmer MA, Reidy CA, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N (2008) Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6(2):81–89. https://doi.org/10.1890/060148

    Article  Google Scholar 

  50. Pohlert T (2016) Trend: non-parametric trend tests and change-point detection. R package version 0.2.0. https://CRAN.R-project.org/package=trend. Accessed 15 Apr 2019

  51. Quirós R (1988) Relationships between air temperature, depth, nutrients and chlorophyll in 103 Argentinian lakes. Verh Internat Verein Limnol 23:647–658. https://doi.org/10.1080/03680770.1987.11899688

    Article  Google Scholar 

  52. Quirós R, Drago E (1985) Relaciones entre Variables Físicas, morfométricas y climáticas en lagos patagónicos. Rev Asoc Cienc Nat Litor 16:181–199

    Google Scholar 

  53. Quirós R, Drago E (1999) The environmental state of Argentinean lakes: an overview. Lakes Reserv Res Manag 4(1–2):55–64. https://doi.org/10.1046/j.1440-1770.1999.00076.x

    Article  Google Scholar 

  54. Quirós R, Delfino R, Cuch S, Merello R (1983) Diccionario Geográfico de Ambientes Acuáticos Continentales de la República Argentina. Parte I: Ambientes Lénticos. Departamento de Aguas Continentales, Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata

    Google Scholar 

  55. Ramos VA (1999) Las provincias geológicas del territorio argentino. Instituto de Geología y Recursos Minerales. Anales 29(3):41–96

    Google Scholar 

  56. Rupert MG (2001) Relations among rainstorm runoff, streamflow, pH, and metal concentrations, Summitville Mine area, upper Alamosa River basin, southwest Colorado, 1995–97. Water-Resources Investigations Report, USGS Numbered Series 2001-4027. https://doi.org/10.3133/wri014027

  57. Sastre V, Santinelli N, Otaño SH, Ivanissevich ME (1998) Water quality in the lower section of the Chubut River, Patagonia, Argentina. Verh Int Ver Theor Angew Limnol 26(3):951–955. https://doi.org/10.1080/03680770.1995.11900859

    Article  Google Scholar 

  58. Scordo F (2018) Dinámica integral de los recursos hídricos de la cuenca del río Senguer. Doctora thesis, Departamento de Geografía y Turismo, Universidad Nacional del Sur, Argentina

  59. Scordo F, Carbone ME, Piccolo MC, Perillo GME (2017) Influencia de Eventos de Humedad y Sequía en Lagos de la Patagonia Argentina: el Caso de los Lagos Musters y Colhué Huapí. Anuário do Instituto de Geociências 40(3):170–180. https://doi.org/10.11137/2017_3_170_180

    Article  Google Scholar 

  60. Scordo F, Perillo GME, Piccolo MC (2018a) Effect of southern climate modes and variations in river discharge on lake surface area in Patagonia. Inland Waters 8(3):341–355. https://doi.org/10.1080/20442041.2018.1487118

    Article  Google Scholar 

  61. Scordo F, Piccolo MC, Perillo GME (2018b) Aplicación del índice de precipitación evapotranspiración estandarizada (SPEI) para identificar períodos húmedos y secos en la patagonia andina y extra andina argentina. Geociências 37(2):423–436

    Article  Google Scholar 

  62. Scordo F, Seitz C, Melo WD, Piccolo MC, Perillo GME (2018c) Assessment of geomorphological and hydrological changes produced by Pleistocene glaciations in a Patagonian basin. J S Am Earth Sci 83:195–209. https://doi.org/10.1016/j.jsames.2018.03.001

    Article  Google Scholar 

  63. Secretaría de Energía (2003) Catálogo de Recursos Hídricos. Secretaría de Energía – República Argentina, Ciudad autónoma de Buenos Aires

    Google Scholar 

  64. Shimoda Y, Azim ME, Perhar G, Ramin M, Kenney MA, Sadraddini S, Gudimov A, Arhonditsis GB (2011) Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes? J Gt Lakes Res 37(1):173–193. https://doi.org/10.1016/j.jglr.2010.10.004

    Article  Google Scholar 

  65. Silsbe GM, Malkin SY (2016) Where light and nutrients collide: the global distribution and activity of subsurface chlorophyll maximum layers. In: Glibert P, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer, Berlin, pp 141–151

    Google Scholar 

  66. Staehr PA, Brighenti LS, Honti M, Christensen JPA, Rose KC (2016) Global patterns of light saturation and photoinhibition of lake primary production. Inland Waters 6(4):593–607. https://doi.org/10.5268/IW-6.4.888

    Article  Google Scholar 

  67. Subsecretaría de Recursos Hídricos de la Nación Argentina (SSRH) (2007) Diagnóstico Ambiental – Caracterización del Medio Ambiente (5). Informe final estudio de impacto ambiental presa multipropósito “Los Monos”, Chubut

    Google Scholar 

  68. Valladares A (2004) Cuenca de los ríos Senguer y Chico. Argentina (Cuenca n°66). Subsecretaria de Recursos Hídricos de la Nación, Ciudad Autónoma de Buenos Aires. https://www.mininterior.gov.ar/obras-publicas/pdf/66.pdf. Accessed 20 June 2019

  69. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Elsevier B.V., San Diego

    Google Scholar 

  70. Whittier TR, Paulsen SG (1992) The surface water component of the environmental monitoring and assessment program (EMAP): an overview. Aquat Ecosyst Health Manag 1(2):119–126. https://doi.org/10.1007/BF00044043

    Article  Google Scholar 

  71. Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6(5):247–254. https://doi.org/10.1890/070140

    Article  Google Scholar 

  72. Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Ocean 54(6):2273–2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273

    Article  Google Scholar 

  73. World Health Organization (WHO) (1996) Guidelines for drinking-water quality. Health criteria and other supporting information, vol 2, 2nd edn. WHO, Ginebra

    Google Scholar 

  74. Wurts WA, Durborow RM (1992) Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds. Southern Regional Aquaculture Center Publication No. 464

  75. Zeileis A, Leisch F, Hornik K, Kleiber C (2002) Strucchange: an R package for testing for structural change in linear regression models. J Stat Softw 7(2):1–38. https://doi.org/10.18637/jss.v007.i02

    Article  Google Scholar 

Download references

Acknowledgements

Partial support for this study was provided by grants from the Inter-American Institute for Global Change Research (IAI) CRN3038, which is supported by the US National Science Foundation (Grant GEO-1128040), and an IAI-CONICET special grant. We also thank the Universidad Nacional del Sur and the Concejo Nacional de Investigaciones Científicas y Técnicas. Thanks are also due to Dr. Eleonora M. Fernández and Lic. Javier H. Arlenghi for their support with the laboratory techniques.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Facundo Scordo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of the Topical Collection in Environmental Earth Sciences on “Advances in Environmental Geochemistry” guest edited by Dr. Eleanor Carol, Dr. Lucia Santucci and Dr. Lia Botto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scordo, F., Spetter, C.V., Seitz, C. et al. Spatial and seasonal dynamics of water physical–chemical parameters in rivers and lakes of an Argentinian Patagonia basin. Environ Earth Sci 79, 322 (2020). https://doi.org/10.1007/s12665-020-09063-7

Download citation

Keywords

  • Water quality
  • Rivers
  • Lakes
  • Andean region
  • Patagonian plains region