Glacier mass changes over Duxueshan, Burog Kangri, and Zangser Kangri in the Inner Tibetan Plateau

Abstract

The variation of glacier mass balance during the past decades remains poorly known for Duxueshan, Burog Kangri, and Zangser Kangri (DBZ) which are located in the Inner Tibetan Plateau (ITP), a transition zone with shifting influences between the westerlies and the Indian summer monsoon. In the present study, glacier area and mass changes were determined by topographic maps (TOPO), Landsat imagery and multi-temporal digital elevation models (DEMs) generated with TOPO, SRTM, TanDEM-X bistatic interferometric synthetic aperture radar (InSAR) images, and High Mountain Asia 8-m DEMs. On average, the glaciers showed a slight retreat from 343.27 ± 5.23 km2 in 1971 to 334.67 ± 3.21 km2 in 2018 (0.05 ± 0.04% a−1). However, glaciers lost mass at a rate of -0.32 ± 0.03 m w.e. a−1 from 1971 to 2012. For the 1999–2012 and 2012–2017 periods, mass balances of − 0.03 ± 0.16 and 0.09 ± 0.04 m w.e. a−1, respectively, were observed, which represents an approximately equilibrium. Two glaciers also advanced in our investigation period, and we confirmed one of them surged in 2015.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. An W, Hou S, Zhang W, Wang Y, Liu Y (2016) Significant recent warming over the Northern Tibetan Plateau from Tibetan Plateau from Ice Core δ18O records. Clim Past 12:201–211. https://doi.org/10.5194/cp-12-201-2016

    Article  Google Scholar 

  2. Berthier E, Cabot V, Vincent C, Six D (2016) Decadal region-wide and glacier-wide mass balances derived from multi-temporal aster satellite digital elevation models. Validation over the Mont-Blanc Area. Front Earth Sci. https://doi.org/10.3389/feart.2016.00063

    Article  Google Scholar 

  3. Bolch T et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314. https://doi.org/10.1126/science.1215828

    Article  Google Scholar 

  4. Bolch T, Pieczonka T, Mukherjee K (1970) Shea J (2017) Brief communication: glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the. Cryosphere 11:531–539. https://doi.org/10.5194/tc-11-531-2017

    Article  Google Scholar 

  5. Brun F, Berthier E, Wagnon P, Kaab A, Treichler D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat Geosci 10:668–673. https://doi.org/10.1038/NGEO2999

    Article  Google Scholar 

  6. Bürgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209. https://doi.org/10.1146/annurev.earth.28.1.169

    Article  Google Scholar 

  7. Chudley TR, Wilis IC (2018) Glacier surges in the north-west West Kunlun Shan inferred from 1972 to 2017 Landsat Imagery. J Glaciol 65:1–12. https://doi.org/10.1017/jog.2018.94

    Article  Google Scholar 

  8. Costantini M (1998) A novel phase unwrapping method based on network programming Ieee T. Geosci Remote 36:813–821. https://doi.org/10.1109/36.673674

    Article  Google Scholar 

  9. Fahnestock M, Scambos T, Moon T, Gardner A, Haran T, Klinger M (2016) Rapid large-area mapping of ice flow using Landsat 8. Remote Sens Environ 185:84–94. https://doi.org/10.1016/j.rse.2015.11.023

    Article  Google Scholar 

  10. Fischer M, Huss M, Hoelzle M (2015) Surface elevation and mass changes of all Swiss glaciers 1980–2010. Cryosphere 9:525–540. https://doi.org/10.5194/tc-9-525-2015

    Article  Google Scholar 

  11. Gardelle J, Berthier E, Arnaud Y (2012a) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J Glaciol 58:419–422. https://doi.org/10.3189/2012jog11j175

    Article  Google Scholar 

  12. Gardelle J, Berthier E, Arnaud Y (2012b) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci 5:322–325. https://doi.org/10.1038/Ngeo1450

    Article  Google Scholar 

  13. Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7:1263–1286. https://doi.org/10.5194/tc-7-1263-2013

    Article  Google Scholar 

  14. Gilbert A et al (2018) Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet. Cryosphere 12:2883–2900. https://doi.org/10.5194/tc-12-2883-2018

    Article  Google Scholar 

  15. Guo W et al (2015) The second Chinese glacier inventory: data, methods and results. J Glaciol 61:357–372. https://doi.org/10.3189/2015JoG14J209

    Article  Google Scholar 

  16. Guo WQ, Liu SY, Wei JF, Bao WJ (2013) The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Ann Glaciol 54:299–310. https://doi.org/10.3189/2013aog63a495

    Article  Google Scholar 

  17. Harrison S et al (2018) Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12:1195–1209. https://doi.org/10.5194/tc-12-1195-2018

    Article  Google Scholar 

  18. Holzer N, Vijay S, Yao T, Xu B, Buchroithner M, Bolch T (2015) Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere 9:2071–2088. https://doi.org/10.5194/tc-9-2071-2015

    Article  Google Scholar 

  19. Huss M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7:877–887. https://doi.org/10.5194/tc-7-877-2013

    Article  Google Scholar 

  20. Immerzeel WW, van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. https://doi.org/10.1126/science.1183188

    Article  Google Scholar 

  21. Jóhannesson T, Raymond C, Waddington E (1989) Time-scale for adjustment of glaciers to changes in mass balance. J Glaciol 35:355–369. https://doi.org/10.3189/S002214300000928X

    Article  Google Scholar 

  22. Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9:557–564. https://doi.org/10.5194/tc-9-557-2015

    Article  Google Scholar 

  23. Li G, Lin H, Ye Q (2018) Heterogeneous decadal glacier downwasting at the Mt. Everest (Qomolangma) from 2000 to ~ 2012 based on multi-baseline bistatic SAR interferometry. Remote Sens Environ 206:336–349. https://doi.org/10.1016/j.rse.2017.12.032

    Article  Google Scholar 

  24. Lin H, Li G, Cuo L, Hooper A, Ye Q (2017) A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014. Sci Rep 7:6712. https://doi.org/10.1038/s41598-017-07133-8

    Article  Google Scholar 

  25. Liu L, Jiang L, Jiang H, Wang H, Ma N, Xu H (2019) Accelerated glacier mass loss (2011–2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sens Environ 231:111241. https://doi.org/10.1016/j.rse.2019.111241

    Article  Google Scholar 

  26. Lovell AM, Carr JR, Stokes CR (2019) Spatially variable glacier changes in the Annapurna conservation area, Nepal, 2000 to 2016. Remote Sens 11:1452. https://doi.org/10.3390/rs11121452

    Article  Google Scholar 

  27. Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation Nat. Clim Change 4:587–592. https://doi.org/10.1038/nclimate2237

    Article  Google Scholar 

  28. Neckel N, Braun A, Kropáček J, Hochschild V (2013) Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere 7:1623–1633. https://doi.org/10.5194/tc-7-1623-2013

    Article  Google Scholar 

  29. Neckel N, Kropáček J, Bolch T, Hochschild V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ Res Lett 9:1–7. https://doi.org/10.1088/1748-9326/9/1/014009

    Article  Google Scholar 

  30. Neelmeijer J, Motagh M, Bookhagen B (2017) High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: a case study of Inylchek Glacier, Central Asia. Isprs J Photogramm 130:108–121. https://doi.org/10.1016/j.isprsjprs.2017.05.011

    Article  Google Scholar 

  31. Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5:271–290. https://doi.org/10.5194/tc-5-271-2011

    Article  Google Scholar 

  32. Paul F (2019) Repeat glacier collapses and surges in the Amney Machen Mountain Range Tibet, possibly triggered by a developing rock-slope instability. Remote Sens 11:708. https://doi.org/10.3390/rs11060708

    Article  Google Scholar 

  33. Paul F et al (2013) On the accuracy of glacier outlines derived from remote-sensing data. Ann Glaciol 54:171–182. https://doi.org/10.3189/2013aog63a296

    Article  Google Scholar 

  34. Pieczonka T, Bolch T, Wei J, Liu S (2013) Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens Environ 130:233–244. https://doi.org/10.1016/j.rse.2012.11.020

    Article  Google Scholar 

  35. Quincey DJ, Glasser NF, Cook SJ, Luckman A (2015) Heterogeneity in Karakoram glacier surges. J Geophys Res Earth Surf 120:1288–1300. https://doi.org/10.1002/2015jf003515

    Article  Google Scholar 

  36. Rolstad C, Haug T, Denby B (2009) Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap Norway. J Glaciol 55:666–680. https://doi.org/10.3189/002214309789470950

    Article  Google Scholar 

  37. Sam L, Bhardwaj A, Kumar R, Buchroithner MF, Martin-Torres FJ (2018) Heterogeneity in topographic control on velocities of Western Himalayan glaciers. Sci Rep 8:12843. https://doi.org/10.1038/s41598-018-31310-y

    Article  Google Scholar 

  38. Scambos T, Fahnestock M, Moon T, Gardner A, Klinger M (2016) global land ice velocity extraction from Landsat 8 (Go-LIVE), Version 1, Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center. doi:10.7265/N5ZP442B

  39. Shangguan DH, Bolch T, Ding YJ, Kröhnert M, Pieczonka T, Wetzel HU, Liu SY (2015) Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data. Cryosphere 9:703–717. https://doi.org/10.5194/tc-9-703-2015

    Article  Google Scholar 

  40. Shean DE, Alexandrov O, Moratto ZM, Smith BE, Joughin IR, Porter C, Morin P (2016) An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. Isprs J Photogramm 116:101–117. https://doi.org/10.1016/j.isprsjprs.2016.03.012

    Article  Google Scholar 

  41. Vijay S, Braun M (2016) Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sens 8:1038. https://doi.org/10.3390/rs8121038

    Article  Google Scholar 

  42. Wang LP, Xie ZC, Wang X, Liu SY, Ding LF, Shangguan DH (2011) The glacier area changes in the Qangtang Plateau based on the multi-temporal grid method and its sensitivity to climate change. J Mt Sci-Engl 8:882–893. https://doi.org/10.1007/s11629-011-1123-x

    Article  Google Scholar 

  43. Wang N (2009) Variations in net accumulation rate of the malan ice core from the northern tibetan plateau over the period of 1887 though 1998 and their relationship to solar activity. Quat Sci 29:913–919

    Google Scholar 

  44. Wang R, Liu S, Shangguan D, Radić V, Zhang Y (2019) Spatial heterogeneity in glacier mass-balance sensitivity across High Mountain Asia. Water 11:776. https://doi.org/10.3390/w11040776

    Article  Google Scholar 

  45. Wei JF, Liu SY, Guo WQ, Yao XJ, Xu JL, Bao WJ, Jiang ZL (1970s) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann Glaciol 55:213–222. https://doi.org/10.3189/2014aog66a038

    Article  Google Scholar 

  46. Wei J, Liu S, Guo W, Xu J, Bao W, Shangguan D (2015) Changes in Glacier Volume in the North Bank of the Bangong Co Basin from 1968 to 2007 Based on Historical Topographic Maps SRTM, and ASTER Stereo Images. Arctic Antarc Alp Res 47:301–311. https://doi.org/10.1657/aaar00c-13-129

    Article  Google Scholar 

  47. Xu J, Shangguan D, Wang J (2018) Three-dimensional glacier changes in Geladandong Peak Region in the Central Tibetan Plateau. Water 10:1749. https://doi.org/10.3390/w10121749

    Article  Google Scholar 

  48. Yao T, Duan K, Xu B, Wang N, Guo X, Yang X (2008) Precipitation record since AD 1600 from ice cores on the central Tibetan Plateau. Clim Past 4:175–180. https://doi.org/10.5194/cp-4-175-2008

    Article  Google Scholar 

  49. Yao TD et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings Nat. Clim Change 2:663–667. https://doi.org/10.1038/Nclimate1580

    Article  Google Scholar 

  50. Yao T et al (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev Geophys 51:525–548. https://doi.org/10.1002/rog.20023

    Article  Google Scholar 

  51. Zhang W (1983) A surging glacier in the Nanjiabawa Peak Area, Himalayas. J Glaciol Geocryol 5:75–76

    Google Scholar 

  52. Zhang Z, Liu S (2018) Area changes and mass balance of glaciers in KangzhagRi of the Tibetan Plateau from 1970 to 2016 as derived from remote sensing data. J Geo-inf Sci 20:1338–1349. https://doi.org/10.12082/dqxxkx.2018.180059

    Article  Google Scholar 

  53. Zhang G et al (2013) Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. J Glaciol 59:137–148. https://doi.org/10.3189/2013JoG12J152

    Article  Google Scholar 

  54. Zhang Z, Xu J-l, Liu S-y, Guo W-q, Wei J-f, Feng T (1960s) Glacier changes since the early 1960s, eastern Pamir, China. J Mt Sci-Engl 13:276–291. https://doi.org/10.1007/s11629-014-3172-4

    Article  Google Scholar 

  55. Zhang Z, Liu S, Zhang Y, Wei J, Jiang Z, Wu K (2018) Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data. J Glaciol 64:397–406. https://doi.org/10.1017/jog.2018.34

    Article  Google Scholar 

  56. Zhang Z et al (2019) Glacier changes and surges over Xinqingfeng and Malan Ice Caps in the inner Tibetan Plateau since 1970 derived from remote sensing data. Cryosphere Discuss. https://doi.org/10.5194/tc-2019-94

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 41701087, 41701071 and 41471067); the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19070501) and International Partnership Program of Chinese Academy of Sciences (Grant No. 131C11KYSB20160061). Landsat, SRTM C-band and ASTER data were acquired from the US Geological Survey and NASA. The GoLIVE data were from NSIDC. The High Mountain Asia 8-m DEMs were from NASA. The first and second glacier inventories were provided by a past MOST project (2006FY110200) (https://westdc.westgis.ac.cn/glacier). The authors also thank DLR for access to SRTM X-band and TerraSAR-X/TanDEM-X data.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhen Zhang or Shiyin Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Du, Z., Liu, S. et al. Glacier mass changes over Duxueshan, Burog Kangri, and Zangser Kangri in the Inner Tibetan Plateau. Environ Earth Sci 79, 292 (2020). https://doi.org/10.1007/s12665-020-09044-w

Download citation

Keywords

  • Glacier
  • Geodetic mass balance
  • Digital elevation model
  • Glacier surge
  • Inner Tibetan Plateau