Hydrogeochemical and pollution characterization of a shallow glauconitic sandstone aquifer in a peri-urban setting of Bobo-Dioulasso, southwestern Burkina Faso

Abstract

Groundwater resources are often exposed to multiple sources of pollution, which may make them unfit for human consumption. As a result, comprehensive geochemical studies on groundwater status and evolution are required for a sustainable management of water resources. In the present study, 38 water samples from hand-dug wells were collected in a peri-urban area, and their physico-chemical parameters, viz. pH, electrical conductivity (EC), turbidity, dissolved oxygen (DO), total dissolved solids (TDS), major ions (Ca2+, Mg2+, K+, Na+, NO3, Cl, HCO3 and SO42−) and heavy metals (Cd, Cu, total Fe, Ni and Zn) were measured. Because of the short residence time of the groundwater and already advanced weathering stage of the aquifer materials, major ion concentrations, EC and TDS were low and within the World Health Organization (WHO) recommended guideline values for drinking water. However, turbidity, Cd, Ni and, to a lesser degree, total Fe had concentrations greater than the WHO acceptable limits. Piper and Durov diagrams showed that the aquifer is vulnerable to anthropogenic activities, as the groundwater is dominated by a mixed Ca–Mg–Cl–SO4-type water. Bivariate diagrams, correlation and factor analyses indicated that glauconite weathering during water–rock interactions within the aquifer contributed to Ca2+, Mg2+ and SO42− loadings into the groundwater. In contrast, K+ and Na+ can be derived from both chemical weathering and anthropogenic sources such as agricultural activities and landfill leachate. Anthropogenic environmental pollution was mainly associated with turbidity, NO3, Cd, Ni and Zn. Under the current pH and potential redox conditions, Cu was naturally removed from the water column through adsorption onto Fe-oxydroxides; whereas, Cd, Ni and Zn were remained in their free ionic states. This study showed that hydrogeochemical characterization can be a robust tool in assessing groundwater evolution and its pollution status under the influence of multiple anthropogenic sources.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abdel-Rahman G, Seidhom SH, Talaat AM, Some L (2008) Water requirements of some crops in Bobo Dioulasso, western region of Burkina Faso. J Appl Sci Res 4:1658–1666

    Google Scholar 

  2. Abdu N, Abdulkadir A, Agbenin J, Buerkert A (2011) Vertical distribution of heavy metals in wastewater irrigated vegetable garden soils of three West African cities. Nutr Cycl Agroecosys 89:387–397

    Article  Google Scholar 

  3. Abdulkadir A, Dossa LH, Lompo DJP, Abdu N, Van Keulen H (2012) Characterization of urban and peri-urban agroecosystems in three West African cities. Int J Agric Sustain 10:289–314

    Article  Google Scholar 

  4. Ahoulé D, Lalanne F, Mendret J, Brosillon S, Maïga A (2015) Arsenic in African waters: a review. Water Air Soil Pollut 226:1–13

    Article  Google Scholar 

  5. Alloway BJ, Jackson AP (1991) The behavior of heavy-metals in sewage sludge-amended soils. Sci Total Environ 100:151–176

    Article  Google Scholar 

  6. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA, AWWA and WEF, Washington

    Google Scholar 

  7. Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkerma, Rotterdam

    Google Scholar 

  8. Baker A (2003) Land use and water quality. Hydrol Process 17:2499–2501

    Article  Google Scholar 

  9. Barbier B, Dembelé Y, Compaoré L (2006) L’eau au Burkina Faso: usages actuels et perspectives. Sud Sci Technol 14:20–29

    Google Scholar 

  10. Barry B, Obuobie E, Andreini M, Andah W, Pluquet M (2005) Comprehensive assessment of water management in agriculture (comparative study of river basin development and management). International Water Management Institute.

  11. Barrett MH, Hiscock KM, Pedley S, Lerner DN, Tellam JH, French MJ (1999) Marker species for identifying urban groundwater recharge sources—a review and case study in Nottingham UK. Water Res 33:3083–3097

    Article  Google Scholar 

  12. Belkhiri L, Mouni L, Tiri A (2012) Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer. Algeria Environ Geochem Health 34:1–13

    Article  Google Scholar 

  13. Bigalke M, Ulrich A, Rehmus A, Keller A (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut 221:85–93

    Article  Google Scholar 

  14. Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179

    Article  Google Scholar 

  15. Bostick BC, Fendorf S, Fendorf M (2000) Disulfide disproportionation and CdS formation upon cadmium sorption on FeS2. Geochim Cosmochim Acta 64:247–255

    Article  Google Scholar 

  16. Bretzler A, Stolze L, Nikiema J, Lalanne F, Ghadiri E, Brennwald MS, Rolle M, Schirmer M (2018) Hydrogeochemical and multi-tracer investigations of arsenic-affected aquifers in semi-arid West Africa. Geosci Front 1–17 (in press)

  17. Bretzler A, Lalanne F, Nikiema J, Podgorski J, Pfenninger N, Berg M, Schirmer M (2017) Groundwater arsenic contamination in Burkina Faso, West Africa: predicting and verifying regions at risk. Sci Total Environ 584–585:958–970

    Article  Google Scholar 

  18. Bronner G, Roussel J, Trompette RA (1980) Genesis and geodynamic evolution of the Taoudeni Cratonic Basin (Upper Precambrian and Paleozoic), Western Africa, in dynamics of plate interior. Geodyn Ser Am Geophys Union 1:81–90

    Google Scholar 

  19. Brown CJ, Barlow JRB, Cravotta CA III, Lindsey BD (2019) The occurrence of lead and manganese in untreated drinking water from Atlantic and Gulf Coastal Plain aquifers, eastern United States-dissolved oxygen and pH framework for evaluating risk of elevated concentrations. Appl Geochem 101:88–102

    Article  Google Scholar 

  20. Burkart MR, Kolpin DW (1993) Hydrogeologic and land-use factors associated with herbicide and nitrate occurrence in near-surface aquifers. Environ Qual J 22:646–656

    Article  Google Scholar 

  21. Chapman MJ, Cravotta III CA, Szabo Z, Lindsey BD (2013) Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008: U.S. Geological Survey scientific investigations report 2013-5072, p 74

  22. Chapman SW, Parker BL (2005) Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resour Res 41:1–16

    Google Scholar 

  23. Choi B, Yun S, Yu S, Lee P, Park S, Chae G, Mayer B (2005) Hydrochemistry of urban groundwater in Seoul, South Korea: effects of land use and pollutant recharge. Environ Geol 48:979–990

    Article  Google Scholar 

  24. Compaore E, Namema LS, Bonkougou S, Sedogo MP (2010) Evaluation de la qualité de composts de déchets urbains solides de la ville de Bobo-Dioulasso, Burkina Faso pour une utilisation efficiente en agriculture. J Appl Biosci 33:2076–2083

    Google Scholar 

  25. Compaore E, Namema LS (2010) Compostage et qualité du compost de déchets urbains solides de la ville de Bobo-Dioulasso, Burkina Faso. Tropicultura 26:232–237

    Google Scholar 

  26. DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentrations. Aquat Toxicol 84:236–246

    Article  Google Scholar 

  27. Dieter HH, Bayer TA, Multhaup G (2005) Environmental copper and manganese in the pathophysiology of neurologic diseases (Alzheimer's disease and manganism). Actahydrochim Hydrobiol 33:72–78

    Article  Google Scholar 

  28. Dippong T, Mihali C, Hoaghia MA, Cical E, Cosma A (2019) Chemical modeling of groundwater quality in the aquifer of Seini town+ Someş Plain, Northwestern Romania. Ecotoxicol Environ Saf 168:88–101

    Article  Google Scholar 

  29. Durov SA (1948) Natural waters and graphic representation of their composition. Dok Akad Nauk SSSR 59:87–90

    Google Scholar 

  30. Dzombak DA, Morel FMM (1990) Surface complexation modelling: hydrous ferric oxide. Wiley, New York

    Google Scholar 

  31. Edmunds WM, Darling WG, Kinniburgh DG (1988) Solute profile techniques for recharge estimation in semi-arid and arid terrain. In: Simmers I (ed) Estimation of natural groundwater recharge. Proceeding NATO advanced research workshop, Reidel, pp 139–157

    Google Scholar 

  32. Eillas JA (1980) Convenient parameter for tracing leachate from sanitary landfills. Water Res 14:1283–1287

    Article  Google Scholar 

  33. Elango L, Kannan R (2007) Rock–water interaction and its control on chemical composition of groundwater. In: Sarkar D, Datta R, Hannigna R (eds) Development in environmental science, vol 5, , pp 229–243

  34. Freeze AR, Cherry JA (1979) Groundwater. Prentice-Hall Inc, Englewood cliffs, p 604

    Google Scholar 

  35. Gad M, Dahab K, Ibrahim H (2016) Impact of iron concentration as a result of groundwater exploitation on the Nubian sandstone aquifer in El Kharga Oasis, western desert, Egypt. NRIAG J Astron Geophys 5:216–237

    Article  Google Scholar 

  36. Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  37. Gombert P (1998) Synthèse sur la géologie et hydrogéologie de série sédimentaire du sud-est du Burkina Faso. Rapport technique, Programme RESO, ATG, IWACO, Ouagadougou

    Google Scholar 

  38. Grant CA (2011) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Pedologist 3:143–155

    Google Scholar 

  39. Groen J, Schuchmann JB, Geinaert W (1988) The occurrence of high nitrate concentrations in groundwater in villages in northwestern Burkina Faso. J Afr Earth Sci 7:999–1009

    Article  Google Scholar 

  40. Gwebu TD (2003) Environmental problems among low income urban residents: an empirical analysis of old Naledi-Gaborone. Botswana Habitat Int 27:407–427

    Article  Google Scholar 

  41. Hajeb P, Sloth JJ, Shakibazadeh S, Mahyudin NA, Afsah-Hejri L (2014) Toxic elements in food: occurrence, binding, and reduction approaches. Compr Rev Food Sci Food Saf 13:457–472

    Article  Google Scholar 

  42. Hao Y, Cao B, Chen X, Yin J, Sun R, Yeh T-CJ (2012) A piecewise grey system model for study the effects of anthropogenic activities on karst hydrological processes. Water Resour Manag 27(5):1207–1220

    Article  Google Scholar 

  43. Hasan MR, Khan MZH, Khan M, Aktar S, Rahman M, Hossain F, Hasan ASMM (2016) Heavy metals distribution and contamination in surface water of the Bay of Bengal coast. Cogent Environ Sci 2:1–12

    Article  Google Scholar 

  44. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. In: U.S. Geological Survey water-supply paper, vol 2254, p 263, 3 pls

  45. Houben GJ, Sitnikova MA, Post VEA (2017) Terrestrial sedimentary pyrites as a potential source of trace metal release to groundwater—a case study from the Emsland, Germany. Appl Geochem 76:99–111

    Article  Google Scholar 

  46. Hrudey SE, Hrudey EJ (2004) Safe drinking water—lessons from recent outbreaks in affluent nations. IWA Publishing, London

    Google Scholar 

  47. Huneau F, Dakouré D, Celle-Jeanton H, Vitvar J, Ito M, Traoré S, Compaoré NF, Jirakova H, Le Coustumer P (2011) Flow pattern and residence time of groundwater within the south-eastern Taoudeni sedimentary basin (Burkina Faso, Mali). J Hydrol 409:423–439

    Article  Google Scholar 

  48. IAEA; International Atomic Energy Agency (2017) Integrated and sustainable management of shared aquifer systems and basins of the Sahel regions, Taoudeni Basin, p 126

  49. INSD; Institut National de la Statistique et de la Démographie (2007) Résultants préliminaires du recensement général de la population et de l’habitation (RGPH) de 2006, Burkina Faso, p 51

  50. Jalali M (2005) Nitrate leaching from agricultural land in Hamadan, western Iran. Agricult Ecosyst Environ 110:210–218

    Article  Google Scholar 

  51. Jiao JJ, Wang XS, Nandy S (2006) Preliminary assessment of the impacts of deep foundations and land reclamation on groundwater flow in a coastal area in Hong Kong, China. Hydrogeol J 14(1–2):100–114

    Article  Google Scholar 

  52. Kiba DI, Lompo F, Compaore E, Randriamantsoa L, Sedogo PM, Frossard E (2012) A decade of non-sorted solid urban wastes inputs safely increases sorghum yield in periurban areas of Burkina Faso. Acta Agric Scand Sect B Soil Plant Sci 62:59–69

    Google Scholar 

  53. Kinané ML, Tougouma A, Ouédraogo D, Sanou M (2008) Urban farmers’ irrigation practices in Burkina Faso. Urban Agric Mag 20:25–26

    Google Scholar 

  54. Koh DC, Ko KS, Kim Y, Lee SG, Chang HW (2007) Effect of agricultural land use on the chemistry of groundwater from basaltic aquifers, Jeju Island, South Korea. Hydrogeol J 15:727–743

    Article  Google Scholar 

  55. Koterba MT, Wilde FD, Lapham WW (1995) Groundwater data-collection protocols and procedures for the National Water-Quality Assessment Program—collection and documentation of water-quality samples and related data. U.S. Geological Survey open-file report 95-399, p 114

  56. Kubier A, Pichler T (2019) Cadmium in groundwater—a synopsis based on a large hydrogeochemical data set. Sci Total Environ (in press)

  57. Kumar M, Kumari K, Ramamathan AL (2007) A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts. Environ Geol 53:553–574

    Article  Google Scholar 

  58. Lee SM, Min KD, Woo NC, Kim YJ, Ahn CH (2003) Statistical assessment of nitrate contamination in urban groundwater using GIS. Environ Geol 44:210–221

    Article  Google Scholar 

  59. Li S, Zhang Q (2010) Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. J Hazard Mater 181:1051–1058

    Article  Google Scholar 

  60. Leckie JO, Pacey JG, Halvadakis C (1975) Accelerated refuse stabilization through controlled moisture application. In: Presented in 2nd annual national conference on environmental engineering research device design, Gainesville, July 1975 (unpublished)

  61. Leung CM, Jiao JJ, Malpas J, Chan WT, Wang YX (2005) Factors affecting the groundwater chemistry in a highly urbanized coastal area in Hong Kong: an example from the mid-levels area. Environ Geol 48(4–5):480–495

    Article  Google Scholar 

  62. Ma B, Jin M, Liang X, Li J (2018) Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: hydrogeochemistry and environmental tracer indicators. Hydrogeol J 26:233–250

    Article  Google Scholar 

  63. Macpherson GI (2009) CO2 distribution in groundwater and the impact of groundwater extraction on the global C cycle. Chem Geol 264:328–336

    Article  Google Scholar 

  64. Mahlknecht J, Steinich B, De Leon IN (2004) Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environ Geol 45:781–795

    Article  Google Scholar 

  65. Mann AG, Tam CC, Higgins CD, Rodrigues LC (2007) The association between drinking water turbidity and gastrointestinal illness: a systematic review. BMC Publ Health 7:256

    Article  Google Scholar 

  66. Martinez JD, Johnson KS, Neal JT (1998) Sinkholes in evaporite rocks. Am Sci 86:38–51

    Article  Google Scholar 

  67. Mapanda F, Mangwayana EN, Nyaman-gara J, Giller KE (2005) The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agric Eco-Syst Environ 107:151–165

    Article  Google Scholar 

  68. Maya AL, Loucks MD (1995) Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. J Hydrol 172:31–59

    Article  Google Scholar 

  69. McMahon PB, Chapelle FH (2008) Redox processes and water quality of selected principal aquifer systems. Ground Water 46(259–271):38–51

    Google Scholar 

  70. Melegy AA, Shaban AM, Hassaan MM, Salman SA (2014) Geochemical mobilization of some heavy metals in water resources and their impact on human health in Sohag governorate. Egypt Arab J Geosci 7:4541–4552

    Article  Google Scholar 

  71. Mirlean N, Roisenberg A (2006) The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environ Pollut 143:335–340

    Article  Google Scholar 

  72. Moeck C, Affolter A, Radny D, Dressmann H, Auckenthaler A, Huggenberger P, Schirmer M (2017) Improved water resource management for a highly complex environment using three-dimensional groundwater modeling. Hydrogeol J 26:133–146

    Article  Google Scholar 

  73. Morris BL, Lawrence AR, Chilton PJC, Adams B, Calow RC, Klinck BA (2003) A global assessment of problem and options for management. United Nations Environment Program Groundwater, Nairobi, p 140

    Google Scholar 

  74. Moussine-Pouchkine A, Bertrand-Sarfati J (1997) Tectonosedimentary subdivisions in the Neoproterozoic to Early Cambrian cover of the Taoudenni Basin (Algeria–Mauritania–Mali). J Afr Earth Sci 24:425–443

    Article  Google Scholar 

  75. Nagarajan R, Rajmohan N, Mahendran U, Senthamikumar S (2010) Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environ Monit Assess 171:289–308

    Article  Google Scholar 

  76. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  Google Scholar 

  77. Obuobie E, Barry B (2012) Burkina Faso, in groundwater availability and use in sub Saharan Africa; a review of fifteen countries. In: Pavelic P et al (eds) International Water Management Institute, Sri Lanka

  78. Ouédraogo C (2006) Synthèse Géologique de la Région Ouest du Burkina Faso. Programme VREO, SOFRECO-SAWES, Bobo-Dioulasso, Burkina Faso

    Google Scholar 

  79. Pan JL, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32:1–12

    Article  Google Scholar 

  80. Pawar NJ, Shaikh IJ (1995) Nitrate pollution of groundwaters from shallow basaltic aquifers, Deccan trap hydrologic province, India. Environ Geol 25:197–204

    Article  Google Scholar 

  81. Piper AM (1944) A graphical procedure in the chemical interpretation of groundwater analysis. Trans Am Geo Union 25:914–928

    Article  Google Scholar 

  82. Prasanna MV, Chidambaram S, Srinivasamoorthy K, Anandhan P, John P (2006) A study on hydrogeochemisty along the groundwater flow path is different litho units in Gadilam river basin, Tamilnadu (India). J Ultra Chem 2:2157–17210

    Google Scholar 

  83. Puigdomenech IH (2001) Medusa, hydra-medusa: make equilibrium diagrams using sophisticated algorithms. Royal Institute of Technology, Stockholm

    Google Scholar 

  84. Rajmohan N, Elango L (2005) Nutrient chemistry of groundwater in an intensively irrigated region of southern India. Environ Geol 47:820–830

    Article  Google Scholar 

  85. Rajeshkumar S, Liu Y, Zhang X, Ravikumar B, Bai G, Li X (2018) Studies on seasonal pollution of heavy metals in water, sediments, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191:626–638

    Article  Google Scholar 

  86. Ren W, Zhong Y, Meligrana J, Anderson B, Watt WE, Chen J, Leung H-L (2003) Urbanization, land use, and water quality in Shanghai, 1947–1996. Environ Int 29:649–659

    Article  Google Scholar 

  87. Rosen M, Jones S (1998) Controls on the chemical composition of groundwater from alluvial aquifers in the Wanaka and Wakatipu basins, Central Otago, New Zealand. Hydrogeol J 6(2):264–281

    Article  Google Scholar 

  88. Sako A, Yaro JM, Bamba O (2018a) Impacts of hydrogeochemical processes and anthropogenic activities on groundwater quality in the Upper Precambrian Sedimentary aquifer of northwestern Burkina Faso. Appl Water Sci 88:1–14

    Google Scholar 

  89. Sako A, Swadogo S, Yoni M, Nimi M, Zongo O, Bamba O (2018b) Hydrogeochemical characterization of dug well water and its suitability for domestic water supply in the village of Passakongo, Dedougou municipality, Burkina Faso. Environ Nat Resour Res 8:126–137

    Google Scholar 

  90. Sako A, Bamba O, Gordio A (2016) Hydrogeochemical processes controlling groundwater quality around Bomboré gold mineralized zone, Central Burkina Faso. J Geochem Explor 170:58–71

    Article  Google Scholar 

  91. Sangare CK, Compaore E, Buerkert A, Vanclooster M, Sedogo MP, Bielders CL (2012) Nutr Cycl Agroecosyst 92:207–224

    Article  Google Scholar 

  92. Satarug S, Garrett SH, Sens A, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190

    Article  Google Scholar 

  93. Schecher WD, McAvoy DC (2003) MINEQL+ chemical equilibrium modeling system, version 4.5 for Windows, user's manual. Environmental Research Software

  94. Sidibé-Anago AG, Ouedraogo GA, Kanwé AB, Ledin I (2009) Foliage yield, chemical composition and intake characteristics of three mucuna varieties. Trop Subtrop Agroecosyst 10:75–84

    Google Scholar 

  95. Seddique AA, Ahmed KM, Shamsudduha M, Aziz Z, Hoque MA (2004) Heavy Metal pollution in groundwater in and around Narayanganj town, Bangladesh. Bangladesh J Geol 23:1–12

    Google Scholar 

  96. Sivakumar MVK, Gnoumou F (1987) Agroclimatology of Africa of the West: Burkina Faso. In: Bulletin of information no. 23. ICRISAT, Pantcheru

  97. Smedley PL, Knudsen J, Maiga D (2007) Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Appl Geochem 22:1074–1092

    Article  Google Scholar 

  98. Sogreah Ingénierie (1993) Notice explicative de la carte hydrogéologique 1:50000 de la région de Bobo-Dioulasso. Etude des ressources en eau souterraine de la zone sédimentaire de la région de Bobo-Dioulasso, Ministère de l'Eau, Direction Régionale de l'Eau des Hauts Bassins, Bobo Dioulasso, Burkina Faso

  99. Sprynskyy M, Kowalkowski T, Tutu H, Cozmuta LM, Cukrowska EM, Buszewski B (2011) The adsorption properties of agricultural and forest soils towards heavy metal ions (Ni, Cu, Zn, and Cd). Soil Sediment Contam 20:12–29

    Article  Google Scholar 

  100. Sunkari ED, Zango MS, Korboe HM (2018) Comparative analysis of fluoride concentrations in groundwaters in northern and southern Ghana: implications for the contaminant sources. Earth Syst Environ 2:103–117

    Article  Google Scholar 

  101. Taylor RG, Scanlon B, Doll P, Rodell M, van Beek R, Wada Y, Treidel H (2012) Ground water and climate change. Nat Clim Change 3:322–329

    Article  Google Scholar 

  102. Tirogo J, Jost A, Biaou A, Valdes-Lao D, Koussoubé Y, Ribstein P (2016) Climate variability and groundwater response: a case study in Burkina Faso (West Africa). Water 8:1–20

    Article  Google Scholar 

  103. Traoré F (2007) Méthodes d’estimation de l’évapotranspiration réelle à l’échelle du bassin versant du Kou au Burkina Faso. Université de Liège, Mémoire de DEA en Sciences de Gestion de l’Environnement

    Google Scholar 

  104. UNEP (2010) Final review of scientific information on cadmium. United Nations Environment Programme

  105. WHO (2008) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

  106. Wallens J, Compaoré NF (2003) Renforcement de la Capacité de Gestion des Ressources en eau dans l’Agriculture Moyennant des Outils de Suivi-Évaluation—GEeau; Rapport Annuel N1 (Décembre 2001–Novembre 2002); Direction Régionale de l’Agriculture, de l’Hydraulique et des Ressources Halieutiques des Hauts Bassins: Bobo Dioulasso, Burkina Faso

  107. Walvoord MA, Phillips FM, Stonestrom DA, Evans RD, Hartsough PC, Newman BD, Striegl RG (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024

    Article  Google Scholar 

  108. Wright A (1999) Groundwater contamination as a result of developing urban settlements. Water Research Commission report 514/1/99. Water Research Commission, Pretoria

  109. Yaméogo S, Savadogo AN (2002) Les Ouverages de Captage de la ville de Ouagadougou et Leur Vulnérabilité à la Pollution. In Maiga AH, Pereira LS, Musy A (eds) Sustainable water resources management: health and productivity

  110. Yashoda T, Reddy B, Ramana CV (2014) Pre- and post-monsoon variation in physico chemical characteristics in groundwater quality of Mindi industrial area, Visakhapatnam, India. Int J Environ Sci 4:746–753

    Google Scholar 

  111. Yidana SM, Banoeng-Yakubo B, Akabzaa TM (2010) Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. J Afr Earth Sci 58:220–234

    Article  Google Scholar 

  112. Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to Nestor Fiacre Compoaré, a water engineer from the Direction Régionale de l’Eau et de l’Assainissement des Hauts Bassins, Bobo-Dioulasso, for providing sampling and logistic support. The authors would also like to thank two anonymous reviewers for their helpful comments and suggestions which have greatly improved the early version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aboubakar Sako.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sako, A., Sawadogo, S., Nimi, M. et al. Hydrogeochemical and pollution characterization of a shallow glauconitic sandstone aquifer in a peri-urban setting of Bobo-Dioulasso, southwestern Burkina Faso. Environ Earth Sci 79, 296 (2020). https://doi.org/10.1007/s12665-020-09041-z

Download citation

Keywords

  • Groundwater quality
  • Non-point source pollution
  • Chemical weathering
  • Water–rock interaction
  • Heavy metals