Granite- and andesite-hosted thermal water: geochemistry and environmental issues in northern Sardinia, Italy

Abstract

Groundwater quality can be compromised by its interaction with deep thermal waters. In northern Sardinia, two different deep thermal-water-flow systems have recently been recognized on the basis of thermal and isotopic features. One system (GW) is hosted in deep, mainly granitic, fractured reservoirs with water temperatures of 30–45 °C and Cl–Na hydrofacies. These waters have high fluoride contents owing to their alkalinity and water–rock interactions during long residence times in the reservoirs. Their bulk chemistry indicates chemistry by concentrating elements of environmental concern through adsorption, such as first-row transition metals and some chalcophile elements. The other system (AW) involves volcano-sedimentary rocks with water temperatures of 20–30 °C. These waters have neutral pH and are categorized as bicarbonate-alkaline and alkaline-earth hydrofacies. Their relatively high contents of chalcophile elements are consistent with their high dissolved CO2 contents; major elements are in equilibrium with kaolinite, which has a low cationic exchange capacity. In both of these flow systems, B speciation depends on pH. Furthermore, Mn and Fe occur as Mn2+ and Fe2+ species, respectively, depending on Eh–pH conditions. High Mn and Fe concentrations are derived from the reduction of Fe oxyhydroxides, releasing adsorbed Mn2+. The direct reduction of Mn4+ phases of Tertiary volcanic rocks also produces high Mn2+ concentrations. Fe oxyhydroxide reduction, at near-neutral pH, can also promote mobilization of As as HAsO42− or, with increasing pH, as H2AsO4 species. Trace-element analyses and speciation modeling indicate marked differences between GW and AW thermal-water systems, but neither contains metal concentrations at sufficient levels to cause health concerns via water consumption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aksever F, Karaguzel R, Mutluturk M (2015) Evaluation of groundwater quality and contamination in drinking water basins: a case study of the Senirkent- Uluborlu basin (Isparta-Turkey)”. Environ Earth Sci. 73:1281–1293. https://doi.org/10.1007/s12665-014-3483-3

    Article  Google Scholar 

  2. Al-Harbi M, Al-Ruwaih FM, Alsulaili A (2014) Statistical and analytical evaluation of groundwater quality in Al-Rawdhatain field. Environ Prog Sustain Energy 33:895–904. https://doi.org/10.1002/ep.11870

    Article  Google Scholar 

  3. Angelone M, Gasparini C, Guerra M, Lombardi S, Pizzino L, Quattrocchi F, Sacchi E, Zuppi GM (2005) Fluid Geochemistry of the Sardinian Rift-Campidano Graben (Sardinia, Italy): fault segmentation, seismic quiescence of geochemically “active” faults, and new constraints for selection of CO2 storage sites. Appl Geocem 20(2):317–340. https://doi.org/10.1016/j.apgeochem.2004.08.008

    Article  Google Scholar 

  4. Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim Cosmochim Acta 54(11):3123–3137

    Article  Google Scholar 

  5. Barceloux DG (1999) Manganese. Clin Toxicol 37:293–307

    Google Scholar 

  6. Beccaluva L, Bianchini G, Natali C, Siena F (2011) Geodynamic control on orogenic and anorogenic magmatic phases in Sardinia and Southern Spain: inferences for the Cenozoic evolution of the western Mediterranean. Lithos 123:218–224. https://doi.org/10.1016/j.lithos.2011.01.007

    Article  Google Scholar 

  7. Beretta R, Ravazzani G, Maiorano C, Mancini M (2018) Simulating the influence of building on flood inundation in Urban Areas. Geosciences 8:77. https://doi.org/10.3390/geosciences8020077

    Article  Google Scholar 

  8. Bethke C (1992) In: Bethke, C. (Ed.), The Geochemist’s Workbench: A Users Guide to Rxn, Act2, Tact, React, and Gtplot

  9. Bidau R, Cidu R (2005) Hydrogeochemical baseline studies prior to gold mining: a case study in Sardinia (Italy). J Geochem Explor. https://doi.org/10.1016/j.gexplo.2005.04.001

    Article  Google Scholar 

  10. Blanc Ph, Lassin A, Piantone P, Azaroual M, Jacquemet N, Fabbri A, Gauche EC (2012) Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials. Appl Geochem 27:2107–2116. https://doi.org/10.1016/j.apgeochem.2012.06.002

    Article  Google Scholar 

  11. Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007) Hair manganese and hyperactive behaviours: pilot study of school-age children exposed though tap water. Environ Health Perspect 115:122–127. https://doi.org/10.1289/ehp.9504

    Article  Google Scholar 

  12. Bouchard MF, Sauve S, Barbeau B, Legrand M, Brodeur ME, Bouffard T, Limoges E, Bellinger DC, Mergler D (2011) Intellectual Impairment in School-age Children Exposed to Manganese. Environ Health Perspect 119:138–143. https://doi.org/10.1289/ehp.1002321

    Article  Google Scholar 

  13. Brindha K, Elango L (2011) Fluoride in groundwater: causes, implications and mitigation measures. In: Monroy SD (ed) Fluoride Properties. Fluoride properties, applications and environmental management, New York, p 253

    Google Scholar 

  14. Brunt R, Vasak L, Griffioen J (2004) Fluoride in groundwater: probability of occurrence of excessive concentration on global scale. IGRAC, Report nr. SP 2004-2, pp 12

  15. Bucher K, Stober I (2002) Water-rock reaction experiments with Black Forest gneiss and granite. In: Water-Rock Interaction. Springer, Dordrecht, pp 61–95

  16. Bucher K, Stober I (2010) Fluids in the upper continental crust. Geofluids 10:241–253. https://doi.org/10.1111/j.1468-8123.2010.00279.x

    Article  Google Scholar 

  17. Caboi R, Cidu R, Fanfani L, Zuddas P (1986) Geochemistry of thermal waters in Sardinia (Italy). In: Proc. 5th Int. Symp. WR1, Reykjavik, Iceland, pp. 92–95. Orkustofnun, Reykjavik

  18. Caboi R, Cidu R, Fanfani L, Zuddas P, Zanzari AR (1993) Geochemistry of the high-pCO2 waters in Logudoro, Sardinia, Italy. Appl Geochem 8(2):153–160. https://doi.org/10.1016/0883-2927(93)90031-B

    Article  Google Scholar 

  19. Carmignani L, Barca S, Disperati L, Fantozzi P, Funedda A, Oggiano G, Pasci S (1994) Tertiary compression and extension in the Sardinian basement. Bollettino di Geofisica Teorica e Applicata 30:45–62

    Google Scholar 

  20. Carmignani L, Decandia FA, Disperati L, Fantozzi PL, Lazzarotto A, Liotta D, Oggiano G (1995) Relationships between the Tertiary structural evolution of the Sardinia-Corsica-Provençal Domain and the Northern Apenninnes. Terra Nova 7(2):128–137. https://doi.org/10.1111/j.1365-3121.1995.tb00681.x

    Article  Google Scholar 

  21. Carmignani L, Oggiano G, Funedda A, Conti P, Pasci S (2015) The geological map of Sardinia (Italy) at 1:250,000 scale. J Maps 12(5):826–835. https://doi.org/10.1080/17445647.2015.1084544

    Article  Google Scholar 

  22. Carrillo-Rivera JJ, Cardona A, Edmunds WM (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: san Luis Potosi basin, Mexico. J Hydrol 261:24–47. https://doi.org/10.1016/S0022-1694(01)00566-2

    Article  Google Scholar 

  23. Casini L, Cuccuru S, Puccini A, Oggiano G (2015) Rossi Ph (2015) Evolution of the Corsica-Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysics 646:65–78. https://doi.org/10.1016/j.tecto.2015.01.017

    Article  Google Scholar 

  24. Casula G, Cherchi A, Montadert L, Murru M, Sarria E (2001) The Cenozoic graben system of Sardinia (Italy): geodynamic evolution from new seismic and field data. Mar Pet Geol 18(7):863–888. https://doi.org/10.1016/S0264-8172(01)00023-X

    Article  Google Scholar 

  25. Cerri G, Oggiano G (2002) Le epiclastiti zeolitizzate del Logudoro orientale: un livello guida all’interno della successione vulcano-sedimentaria della Sardegna centrosettentrionale. Bollettino della Società Geologica Italiana 121:3–10

    Google Scholar 

  26. Cerri G, Cappelletti P, Langella A, De’ Gennaro M (2001) Zeolitization of Oligo-Miocene volcaniclastic rocks from Logudoro (northern Sardinia, Italy). Contrib Miner Pet 140(4):404–421. https://doi.org/10.1007/s004100000196

    Article  Google Scholar 

  27. Cidu R, Dore E, Biddau R, Nordstrom DK (2018) Fate of Antimony and Arsenic in Contaminated Waters at the Abandoned Su Suergiu Mine (Sardinia, Italy). Mine Water Environ 37(1):151–165. https://doi.org/10.1007/s10230-017-0479-8

    Article  Google Scholar 

  28. Conte AM, Cuccuru S, D’Antonio M, Naitza S, Oggiano G, Secchi F, Casini L, Cifelli F (2017) The post- collisional late Variscan ferroan granites of southern Sardinia (Italy): inferences for inhomogeneity of lower crust. Lithos 294–295:263–282. https://doi.org/10.1016/j.lithos.2017.09.028

    Article  Google Scholar 

  29. Cuccuru S, Oggiano G, Funedda A (2015) Low Enthalpy geothermal suitability of North Sardinia (Italy). Energy Proc 76:256–263. https://doi.org/10.1016/j.egypro.2015.07.858

    Article  Google Scholar 

  30. Cuoco E, Darrah TH, Buono G, Verrengia G, De Franceco S, Eymold WK, Tedesco D (2015) Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian Plain (Southern Italy). Implications for geochemical survey. Environ Monit Assess 187:1–17. https://doi.org/10.1007/s10661-015-4307-y

    Article  Google Scholar 

  31. Desbarats AJ (2009) On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba. Appl Geochem 24:915–927. https://doi.org/10.1016/j.apgeochem.2009.02.016

    Article  Google Scholar 

  32. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314. https://doi.org/10.1016/j.jcis.2004.08.028

    Article  Google Scholar 

  33. Esmaeili-Vardanjani M, Rasa I, Amiri V, Yazdi M, Pazand K (2015) Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran. Environ Monit Assess. 187:1–18. https://doi.org/10.1007/s10661-014-4261-0

    Article  Google Scholar 

  34. Frape SK, Fritz P, McNutt RT (1984) Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48(8):1617–1627

    Article  Google Scholar 

  35. Frape SK, Blyth A, Blomqvist R, McNutt RH, Gascoyne M (2003) Deep fluids in the continents: II. Crystalline rock. Treatise Geochem 5:605

    Google Scholar 

  36. Funedda A, Oggiano G, Pasci S (2000) The Logudoro basin: a key area for the tectono-sedimentary evolution of North Sardinia. Boll Soc Geol It. 119(1):31–38

    Google Scholar 

  37. Ghiglieri G, Oggiano G, Fidelibus MD, Alemayehu T, Barbieri G, Vernier A (2009) Hydrogeology of the Nurra Region, Sardinia (Italy): basement-cover influences on groundwater occurrence and hydrogeochemistry. Hydrogeol J 17(2):447–466. https://doi.org/10.1007/s10040-008-0369-z

    Article  Google Scholar 

  38. Ghiglieri G, Carletti GA, Pittalis D (2012) Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). J Hydrol 432–433:21–43. https://doi.org/10.1016/j.jhydrol.2012.02.016

    Article  Google Scholar 

  39. Hem JD (1972) Chemical factors that influence the availability of iron and manganese in aqueous systems. Geol Soc Am Bull 83:443–450

    Article  Google Scholar 

  40. Homoncik SC, MacDonald AM, Heal KV, Dochartaigh BÉO, Ngwenya BT (2010) Manganese concentration in Scottish groundwater. Sci Total Environ 408:2467–2473. https://doi.org/10.1016/j.scitotenv.2010.02.017

    Article  Google Scholar 

  41. Kelepertzis E (2014) Investigating the sources and potential health risks of environmental contaminants in the soil and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicol Environ Saf 100:258–265. https://doi.org/10.1016/j.ecoenv.2013.09.030

    Article  Google Scholar 

  42. Kousehlar M, Weisenberger TB, Tutti F, Mirnejad H (2012) Fluid control on low-temperature mineral formation in volcanic rocks of Kahrizak, Iran. Geofluids 12:295–311. https://doi.org/10.1111/gfl.12001

    Article  Google Scholar 

  43. Kuhn M (2004) Reactive Flow Modeling of Hydrothermal Systems. Springer, Berlin

    Google Scholar 

  44. Kumar V, Bharti PK, Talwar M, Tyagi AK, Kumar P (2017) Studies on high iron content in water resources of Moradabad district (UP), India. Water Sci 31:44–51. https://doi.org/10.1016/j.wsj.2017.02.003

    Article  Google Scholar 

  45. Land M, Reichard EG, Crawford SM, Everett RR, Newhouse MW, Williams CF (2004) Ground-water quality of coastal aquifers system in the west coast basin, Los Angeles County, California, 1999-2002. Report 2004-5067 U.S. Department of the interior U.S. Geological Survey. https://doi.org/10.3133/sir20045067

  46. Lustrino M, Fedel L, Melluso L, Morra V, Ronga F, Geldmacher J, Duggen S, Agostini S, Cucciniello C, Franciosi L, Meisel T (2013) Origin and evolution of Cenozoic magmatism of Sardinia (Italy). A combined isotopic (Sr–Nd–Pb–O–Hf–Os) and petrological view. Lithos 180–181:138–158. https://doi.org/10.1016/j.lithos.2013.08.022

    Article  Google Scholar 

  47. Magrini F, Diaferia G, Fadel I, Cammarano F, van der Meijde M, Boschi L (2020) £-D shear wave velocity model of the lithosphere below the Sardinia-Corsica continental block based on Rayleigh-wave phase velocities. Geophys J Int 220:2119–2130. https://doi.org/10.1093/gji/ggz555

    Article  Google Scholar 

  48. Malinverno A, Ryan WBF (1986) Extension in the Thyrrenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–246

    Article  Google Scholar 

  49. Mariani MA, Padedda BM, Kaštovský J, Buscarinu P, Sechi N, Virdis T, Lugliè A (2015) Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Sci Rep 5:1–16. https://doi.org/10.1038/srep17964

    Article  Google Scholar 

  50. Minissale A, Magro G, Tassi F, Frau F, Vaselli O (1999) The origin of natural gas emissions from Sardinia island, Italy. Geochem J 33:1–12

    Article  Google Scholar 

  51. Mongelli G, Monni S, Oggiano G, Paternoster M, Sinisi R (2013) Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy. Hydrol Earth Syst Sci 17:2917–2928. https://doi.org/10.5194/hess-17-2917-2013

    Article  Google Scholar 

  52. Mongelli G, Sinisi R, Mameli P, Oggiano G (2015) Ce anomalies and trace element distribution in sardinian lithiophorite-rich Mn concretions. Jo Geochem Exploit 153:88–96. https://doi.org/10.1016/j.gexplo.2015.03.004

    Article  Google Scholar 

  53. Motsi T, Rowson NA, Simmons MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int J Miner Process 92(1–2):42–48

    Article  Google Scholar 

  54. Munthali MW, Kabwadza-Corner P, Johan E, Matsue N (2014) Decrease in cation exchange capacity of zeolites at neutral pH: examples and proposal of determination method. J Mater Sci Chem Eng 2(8):1–5. https://doi.org/10.4236/msce.2014.28001

    Article  Google Scholar 

  55. Oggiano G, Funedda A (2013) Tertiary structure of North Sardinia: a primary control on geothermal resource. Rendiconti online della Società Geologica Italiana 129:119–121

    Google Scholar 

  56. Oggiano G, Mameli P (2012) Tectonic and litho-stratigraphic controls on kaolin deposits within volcanic successions: insights from the kaoliniferous district of north-western Sardinia (Italy). Ore Geol Rev 48:151–164. https://doi.org/10.1016/j.oregeorev.2012.03.002

    Article  Google Scholar 

  57. Oggiano G, Pasci S, Funedda A (1995) Il bacino di Chilivani-Berchidda: un esempio di struttura trastensiva. Possibili relazioni con la geodinamica cenozoica del Mediterraneo occidentale. Boll Soc Geol It 114:465–475

    Google Scholar 

  58. Oggiano G, Funedda A, Carmignani L, Pasci S (2009) The Sardinia-Corsica microplate and its role in the Northern Apennine geodynamics: new insights from the tertiary intraplate strike-slip tectonics of Sardinia. Ital J Geosci 128:527–539. https://doi.org/10.3301/IJG.2009.128.2.527

    Article  Google Scholar 

  59. Padedda BM, Sechi N, Lai GG, Mariani MA, Pulina S, Sarria M, Satta CT, Virdis T, Buscarinu P, Luglie A (2017) Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: a case study of Lake Cedrino (Sardinia, Italy). Glob Ecol Conserv 12:21–35. https://doi.org/10.1016/j.gecco.2017.08.004

    Article  Google Scholar 

  60. Paquette JL, Menot RP, Pin C, Orsini JB (2003) Episodic short-lived granitic pulses in a post-collisional setting: evidence from precise U-Pb zircon dating through a crustal cross-section in Corsica. Chem Geol 198:1–20. https://doi.org/10.1016/S0009-2541(02)00401-1

    Article  Google Scholar 

  61. Pasci S, Oggiano G, Funedda A (1998) Rapporti tra tettonica e sedimentazione lungo le fasce trascorrenti cenozoiche della Sardegna centro-settentrionale. Boll Soc Geol It 117:443–453

    Google Scholar 

  62. Pasci S, Oggiano G, Langiu MR, Funedda A (2002) Il controllo strutturale sulle risorse idriche sotterranee: il caso del Supramonte e del circuito termominerale di S. COOPERAZIONE MEDITERRANEA cultura, economia, società, Martino

    Google Scholar 

  63. Paternoster M, Oggiano G, Sinisi R, Caracausi A, Mongelli G (2017) Geochemistry of two contrasting deep fluids in the Sardinia microplate (western Mediterranean): relationships with tectonics and heat sources. J Volcanol Geoth Res 336:108–117. https://doi.org/10.1016/j.jvolgeores.2017.02.011

    Article  Google Scholar 

  64. Saxena V, Ahmed S (2001) Dissolution of fluoride in groundwater: a water-rock interaction study. Environ Geol 40(9):1084–1087. https://doi.org/10.1007/s002540100290

    Article  Google Scholar 

  65. Shankar K, Aravindas S, Rajendran S (2011) Hydrochemical profile for assessing the groundwater quality of Paravanar River sub-basin, Cuddalore District, Tamil Nadu, India. Curr World Environ 6:45–52. https://doi.org/10.12944/CWE.6.1.05

    Article  Google Scholar 

  66. Sinisi R, Mameli P, Mongelli G, Oggiano G (2012) Different Mn-ores in a continental arc setting: geochemical and mineralogical evidences from Tertiary deposits of Sardinia (Italy). Ore Geol Rev 47:110–125. https://doi.org/10.1016/j.oregeorev.2012.03.006

    Article  Google Scholar 

  67. Smedley PL (2006) Source and distribution of arsenic in groundwater and aquifers. In: Proceeding of the Symposium Arsenic in Groundwater—a world problem, Utrecht, November 2006

  68. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  Google Scholar 

  69. Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15:213–224. https://doi.org/10.1007/s10040-007-0214-9

    Article  Google Scholar 

  70. Tani Y, Miyata N, Iwahori K, Soma M, Tokuda S, Seyama H, Theng BKG (2003) Biogeochemistry of manganese oxide coating on pebble surfaces in the Kikukawa River System, Shizuoka, Japan. 18, 10, 154, 2003-1554. https://doi.org/10.1016/S0883-2927(03)00075-1

  71. Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328. https://doi.org/10.1146/annurev.earth.32.101802.120213

    Article  Google Scholar 

  72. Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese (II) oxidation. Trends Microbiol 13(9):421–428. https://doi.org/10.1016/j.tim.2005.07.009

    Article  Google Scholar 

  73. Vazquez-Suné E (2003) Urban groundwater Barcelona city case study. Doctoral Thesis, Universitat Politecnica de Catalunya, 62

  74. Virdis SG, Oggiano G, Disperati L (2012) A geomatics approach to multitemporal shoreline analysis in Western Mediterranean: the case of Platamona-Maritza beach (northwest Sardinia, Italy). J Coastal Res 28(3):624–640. https://doi.org/10.2112/JCOASTRES-D-11-00078.1

    Article  Google Scholar 

  75. Vrzel J, Vuković-Gačić B, Kolarević S, Gačić Z, Kračun-Kolarević M, Kostić J et al (2016) Determination of the sources of nitrate and the microbiological sources of pollution in the Sava River Basin. Sci Total Environ 573:1460–1471. https://doi.org/10.1016/j.scitotenv.2016.07.213

    Article  Google Scholar 

  76. Wang S, Terdkiatburana T, Tadé MO (2008) Adsorption of Cu (II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems. Sep Purif Technol 62(1):64–70. https://doi.org/10.1016/j.seppur.2008.01.004

    Article  Google Scholar 

  77. Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P (2006) Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129. https://doi.org/10.1289/ehp.8030

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by an LR7/2007 grant from the Regional Government of Sardinia (Italy).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Cuccuru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuccuru, S., Deluca, F., Mongelli, G. et al. Granite- and andesite-hosted thermal water: geochemistry and environmental issues in northern Sardinia, Italy. Environ Earth Sci 79, 257 (2020). https://doi.org/10.1007/s12665-020-09004-4

Download citation

Keywords

  • Hydrothermal circuits
  • Calc-alkaline volcanism
  • Ion speciation
  • Water quality
  • Geochemist’s Workbench