Evaluation of water quality near the Malanjhkhand copper mines, India, by use of multivariate analysis and a metal pollution index

Abstract

Sampling of groundwater and surface water at 33 sites near the Malanjhkhand copper mines in India indicated that elevated concentrations of Cu (15.01 mg/l) and Mn (9.040 mg/l) were locally present in water bodies near the mine sites. Multivariate statistical techniques including principal component analysis, cluster analysis and a Pearson correlation matrix were used to determine the relationships between different water quality parameters in water samples. Mining and associated activities were responsible for the different physico-chemical properties of ground and surface water. An assessment of the heavy metal pollution index (HPI) indicated that four surface water sampling points HPI exceeded the critical index value of 100, indicating that water had been contaminated due to discharges from the mines and that groundwater had been locally contaminated due to the infiltration of contaminated leachate from waste dumps.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arnold EG, Lemore SC, Andrew DE (1992) Standard methods for the examination of water and wastewater, vol 18. American Public Health Association, Washington DC

    Google Scholar 

  2. Barakat A, Baghdadi ME, Rais J, Aghezzaf B, Slassi M (2016) Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int Soil Water Conserv Res 4:284–292. https://doi.org/10.1016/j.iswcr.2016.11.002

    Article  Google Scholar 

  3. Belkhiri L, Boudoukha A, Mouni L (2010) A multivariate statistical analysis of groundwater chemistry data. Int J Environ Res 5:537–544. https://doi.org/10.1007/s12517-015-2277-6

    Article  Google Scholar 

  4. Bricker OP, Jones BF (1995) Main factors affecting the composition of natural waters. In: Salbu B, Steinnes E (eds) Trace Elements in natural waters. CRC Press, Boca Raton, pp 1–5

    Google Scholar 

  5. Bouza-Deaño R, Ternero-Rodríguez M, Fernández-Espinosa AJ (2008) Trend study and assessment of surface water quality in the Ebro River (Spain). J Hydrol 361:227–239. https://doi.org/10.1016/j.jhydrol.2008.07.048

    Article  Google Scholar 

  6. Boyacioglu H, Boyacioglu H (2007) Water pollution sources assessment by multivariate statistical methods in the Tahtali Basin, Turkey. Environ Geol 54:275–282. https://doi.org/10.1007/s00254-007-0815-6

    Article  Google Scholar 

  7. Buckley DE, Winters GV (1992) Geochemical characteristics of contaminated surficial sediments in Halifax Harbor: impact of waste discharge. Can J Earth Sci 29:2617–2639. https://doi.org/10.1139/e92-208

    Article  Google Scholar 

  8. Chau KW, Muttil N (2007) Data mining and multivariate statistical analysis for ecological system in coastal waters. J Hydroinform 9:305–317. https://doi.org/10.2166/hydro.2007.003

    Article  Google Scholar 

  9. Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 57(4):295–304. https://doi.org/10.1023/B:GEJO.0000007250.92458.de

    Article  Google Scholar 

  10. Faisal BMR, Majumder RK, Uddin MJ, Abdul M (2014) Studies on heavy metals in industrial effluent, river and groundwater of Savar industrial area, Bangladesh by Principal Component Analysis. IJGGS 5(1):182–191 (ISSN 0976-4380)

    Google Scholar 

  11. Hai XU, Lin-Zhang YANG, Geng-Mao ZHAO, Jia-Guo JIAO, Shi-Xue YIN, Zhao-Pu LIU (2009) Anthropogenic impact on surface water quality in Taihu Lake region, China. Pedosphere 19(6):765–778. https://doi.org/10.1016/S1002-0160(09)60172-7

    Article  Google Scholar 

  12. Halim MA, Sumayed SM, Majumder RK, Ahmed N, Rabbani A (2011) Study on groundwater, river water and tannery effluent quality in Southwestern Dhaka, Bangladesh: insights from multivariate statistical analysis. JNSST 5(3):125–147 (ISSN: 1933-0324)

    Google Scholar 

  13. Herrera-Silveira JA, Morales-Ojeda SM (2009) Evaluation of health status of a coastal ecosystem in southeast Mexico: assessment of water quality, phytoplankton and submerged aquatic vegetation. Mar Pollut Bull 59:72–86. https://doi.org/10.1016/j.marpolbul.2008.11.017

    Article  Google Scholar 

  14. Horton RK (1965) An index systems for rating water quality. J Water Pollut Cont Fed 37(3):300

    Google Scholar 

  15. Ikem A, Osibanjo O, Sridliar MKC, Sobande A (2002) Evaluation of groundwater quality characteristics near two waste sites in Ibadan and Lagos, Nigeria. Water Air Soil Pollut 140:307–333. https://doi.org/10.1023/A:1020165403531

    Article  Google Scholar 

  16. Joung HM, Miller WW, Mahammah CN, Gultjens JCA (1979) A generalised water quality index based on multivariate factor analysis. J Environ Qual 8:95. https://doi.org/10.2134/jeq1979.00472425000800010021x

    Article  Google Scholar 

  17. Kazi TG, Arain MB, Jamali MK, Jalbani N, Afridi HI, Sarfraz RA, Baiga JA, Shaha Abdul Q (2009) Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicol Environ Safe 72:301–309. https://doi.org/10.1016/j.ecoenv.2008.02.024

    Article  Google Scholar 

  18. Khan MYA, Gani KM, Chakrapani GJ (2016) Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arab J Geosci 9(1):1–9. https://doi.org/10.1007/s12517-015-2134-7

    Article  Google Scholar 

  19. Kotti ME, Vlessidis AG, Thanasoulias NC, Evmiridis NP (2005) Assessment of river water quality in Northwestern Greece. Water Resour Manag 19:77–94. https://doi.org/10.1007/s11269-005-0294-z

    Article  Google Scholar 

  20. Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B (2006) Application of chemometrics in river water classification. Water Res 40:744–752. https://doi.org/10.1016/j.watres.2005.11.042

    Article  Google Scholar 

  21. Kumar A, Dua A (2009) Water quality index for assessment of water quality of River Ravi at Madhopur. Glob J Environ Sci 8(1):49–57. https://doi.org/10.4314/gjes.v8i1.50824

    Article  Google Scholar 

  22. Kumarasamy P, James RA, Dahms HU, Byeon CW, Ramesh R (2014) Multivariate water quality assessment from the Tamiraparani river basin, Southern India. Environ Earth Sci 71(5):2441–2451. https://doi.org/10.1007/s12665-013-2644-0

    Article  Google Scholar 

  23. Kuppusamy MR, Giridhar VV (2006) Factor analysis of water quality characteristics including trace metal speciation in the coastal environmental system of Chennai Ennore. Environ Int 32:174–179. https://doi.org/10.1016/j.envint.2005.08.008

    Article  Google Scholar 

  24. Landwehr TM (1979) A statistical view of a class of water quality indices. Wat Resour Res 15:460. https://doi.org/10.1029/WR015i002p00460

    Article  Google Scholar 

  25. Ledesma-Ruiz R, Pasten-Zapata E, Parra R, Harter T, Mahlknecht J (2015) Investigation of the geochemical evolution of groundwater under agricultural land: a case study in northeastern Mexico. J Hydrol 521:410–423. https://doi.org/10.1016/j.jhydrol.2014.12.026

    Article  Google Scholar 

  26. Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in blackfoot disease in Taiwan. Sci Total Environ 313:77–89. https://doi.org/10.1016/S0048-9697(02)00683-6

    Article  Google Scholar 

  27. Lohani BN, Todino M (1984) Water quality index for Chao Phraya river. J Environ Eng Div (ASCE) 110:163. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:6(1163)

    Article  Google Scholar 

  28. Mckenna JE Jr (2003) An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ Model Softw 18(3):205–220. https://doi.org/10.1016/S1364-8152(02)00094-4

    Article  Google Scholar 

  29. Mendiguchía C, Moreno C, García-Vargas M (2007) Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metals and nutrients. Chemosphere 69:1509–1517. https://doi.org/10.1016/j.chemosphere.2007.05.082

    Article  Google Scholar 

  30. Mohan SV, Nithila P, Reddy SJ (1996) Estimation of heavy metal in drinking water and development of heavy metal pollution index. J Environ Sci Health A31(2):283. https://doi.org/10.1080/10934529609376357

    Article  Google Scholar 

  31. Molla MMA, Saha N, Salam SMA, Rakib-uz-Zaman M (2015) Surface and groundwater quality assessment based on multivariate statistical techniques in the vicinity of Mohanpur, Bangladesh. Int J Environ Health Eng 4(1):18. https://doi.org/10.4103/2277-9183.157717

    Article  Google Scholar 

  32. Nakano T, Tayasu I, Yamada Y, Hosono T, Igetaa A, Hyodo F, Andoa A, SaitohaY TT, Wadad E, Yachia S (2008) Effect of agriculture on water quality of Lake Biwa tributaries, Japan. Sci Total Environ 389:132–148. https://doi.org/10.1016/j.scitotenv.2007.08.042

    Article  Google Scholar 

  33. Neimi GJ, Devore P, Detenbeck N, Taylor D, Lim A (1990) Overview of case studies on recovery of aquatic systems from disturbance. Environ Manag 14:571–587. https://doi.org/10.1007/BF02394710

    Article  Google Scholar 

  34. Nishidia N, Miyai M, Tada F, Suzuki S (1982) Computation of index of pollution caused by heavy metals in river water sediments. Environ Pollut 4:241. https://doi.org/10.1016/0143-148X(82)90010-6

    Article  Google Scholar 

  35. Ocampo-Duque W, Ferre-Huguet N, Domingo JL, Schuhmacher M (2006) Assessing water quality in rivers with fuzzy inference systems: a case study. Environ Int 32:733–742. https://doi.org/10.1016/j.envint.2006.03.009

    Article  Google Scholar 

  36. Ogwueleka TC (2014) Assessment of the water quality and identification of pollution sources of Kaduna River in Niger State (Nigeria) using exploratory data analysis. Water Environ J 28(1):31–37. https://doi.org/10.1111/wej.12004

    Article  Google Scholar 

  37. Padro R, Barrado E, Castrillejo Y, Valasco MA, Vaga M (1993) Study of the contents and speciation of heavy metals in river sediments by factor analysis. Anal Lett 26:1719–1739. https://doi.org/10.1080/00032719308021492

    Article  Google Scholar 

  38. Phung D, Huang C, Rutherford S, Dwirahmadi F, Chu C, Wang X, Dinh TA (2015) Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam. Environ Monit Assess 187(5):1–13. https://doi.org/10.1007/s10661-015-4474-x

    Article  Google Scholar 

  39. Prasad B, Bose JM (2001) Evaluation of heavy metal pollution index for surface and spring water near lime stone mining area of Lower Himalayas. Environ Geol 4:183–188. https://doi.org/10.1007/s002540100380

    Article  Google Scholar 

  40. Prasad B, Jaiprakas KC (1999) Evaluation of heavy metals in groundwater near mining area and development of heavy metal pollution index. J Environ Sci Health A 34:91–102. https://doi.org/10.1080/10934529909376825

    Article  Google Scholar 

  41. Prasad B, Kumari P, Bano S, Kumari S (2014) Groundwater quality evaluation near mining area and development of heavy metal pollution index. Water Sci Technol 4:11–17. https://doi.org/10.1080/10934529909376825

    Article  Google Scholar 

  42. Prasad B, Kumari S (2008) Heavy metal pollution index of groundwater of an abandoned opencast mine filled with fly ash. Mine Water Environ 27:265–267. https://doi.org/10.1007/s10230-008-0050-8

    Article  Google Scholar 

  43. Prasad B, Maiti D, Singh KKK (2019) Impact of fly ash placement in an abandoned opencast mine on surface and ground water quality: a case study. Mine Water Environ 38:72–80. https://doi.org/10.1007/s10230-018-00577-y

    Article  Google Scholar 

  44. Razmkhah H, Abrishamchi A, Torkian A (2010) Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on JajroodRiver (Tehran, Iran). J Environ Manag 91:852–860. https://doi.org/10.1016/j.jenvman.2009.11.001

    Article  Google Scholar 

  45. Reddy SJ (1995) Encyclopaedia of environmental pollution and control, vol 1. Environmental Media, Karlia, p 342 (ISBN: 8186421009)

    Google Scholar 

  46. Reghunath R, Murthy TRS, Raghavan BR (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res 36:2437–2442. https://doi.org/10.1016/S0043-1354(01)00490-0

    Article  Google Scholar 

  47. Schoer J (1985) Iron-oxo-hydroxides and their significance to the behaviour of heavy metals in estuaries. Environ Technol Lett 6:189–202. https://doi.org/10.1080/09593338509384336

    Article  Google Scholar 

  48. Sharma M, Kansal A, Jain S, Sharma P (2015) Application of multivariate statistical techniques in determining the spatial temporal water quality variation of Ganga and Yamuna Rivers present in Uttarakhand State, India. Water Qual Exposure Health 7(4):567–581. https://doi.org/10.1007/s12403-015-0173-7

    Article  Google Scholar 

  49. Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Softw 22(4):464–475. https://doi.org/10.1016/j.envsoft.2006.02.001

    Article  Google Scholar 

  50. Simeonova P, Simeonov V, Andreev G (2003) Water quality study of the Struma River Basin, Bulgaria (1989–1998). Cent Eur J Chem 1:136–212. https://doi.org/10.2478/BF02479264

    Article  Google Scholar 

  51. Simeonov V, Stratis JA, Samara C, Zachariadisb G, Voutsac D, Anthemidis A, Kouimtzisc T (2003) Assessment of the surface water quality in Northern Greece. Water Res 37:4119–4124. https://doi.org/10.1016/S0043-1354(03)00398-1

    Article  Google Scholar 

  52. Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Anal Chim Acta 538(1–2):464–475. https://doi.org/10.1016/j.aca.2005.02.006

    Article  Google Scholar 

  53. Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992. https://doi.org/10.1016/j.watres.2004.06.011

    Article  Google Scholar 

  54. Singh UK, Kumar M, Chauhan R, Jha PK, Ramanathan AL, Subramanian V (2008) Assessment of the impact of landfill on the groundwater quality: a case study of the Pirana site in Western India. Environ Monit Assess 141:309–321. https://doi.org/10.1007/s10661-007-9897-6

    Article  Google Scholar 

  55. Sojka M, Siepak M, Ziola A, Frankowski M, Murat-Blazejewska S, Siepak J (2008) Application of multivariate statistical techniques to the evaluation of water quality in the MałaWełna River (Western Poland). Environ Monit Assess 147(1):159–170. https://doi.org/10.1007/s10661-007-0107-3

    Article  Google Scholar 

  56. Subramani T, Elango L, Damodarasamy SR (2005) Groundwater quality and its suitability for drinking and agriculture use in Chithar River Basin, Tamil Nadu, India. Environ Geol 47:579–586. https://doi.org/10.1007/s00254-005-1243-0

    Article  Google Scholar 

  57. Thuong NT, Yoneda M, Matsui Y (2013) Does embankment improve quality of a river? A case study into Lich River inner-city Hanoi, with special reference to heavy metals. J Environ Prot 4(4):361–370. https://doi.org/10.4236/jep.2013.44043

    Article  Google Scholar 

  58. Tiwary TN, Mishra M (1985) A preliminary assignment of water quality index to major indian rivers. Indian J Environ Prot 5:276

    Google Scholar 

  59. Varekar V, Karmakar SJR, Ghosh NC (2015) Design of sampling locations for river water quality monitoring considering seasonal variation of point and diffuse pollution loads. Environ Monit Assess 187(6):1–26. https://doi.org/10.1007/s10661-015-4583-6

    Article  Google Scholar 

  60. Varol M, Sen B (2009) Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey. Environ Monit Assess 159:543–553. https://doi.org/10.1007/s10661-008-0650-6

    Article  Google Scholar 

  61. Vega M, Pardo R, Barrado E, Debam I (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592. https://doi.org/10.1016/S0043-1354(98)00138-9

    Article  Google Scholar 

  62. Wang YS, Lou ZP, Sun CC, Wu ML, Han SH (2006) Multivariate statistical analysis of water quality and phytoplankton characteristics in Daya Bay, China, from 1999 to 2002. Oceanologia 48:193–213

    Google Scholar 

  63. Wu ML, Wang YS (2007) Using chemometrics to evaluate anthropogenic effects in Daya Bay, China. Estuar Coast Shelf Sci 72:732–742. https://doi.org/10.1016/j.ecss.2006.11.032

    Article  Google Scholar 

  64. Zhang Q, Li Z, Zeng G, Li J, Fang Y, Yuan Q, Ye F (2009) Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environ Monit and Assess 152(1–4):123–131. https://doi.org/10.1007/s10661-008-0301-y

    Article  Google Scholar 

  65. Zeng X, Rasmussen TC (2005) Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. J Environ Qual 34(6):1980–1991. https://doi.org/10.2134/jeq2004.0337

    Article  Google Scholar 

  66. Zhou F, Liu Y, Guo H (2007) Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern new territories HongKong. Environ Monit Assess 132:1–13. https://doi.org/10.1007/s10661-006-9497-x

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr Pradeep Kumar Singh, Director, CSIR-Central Institute of Mining and Fuel Research, Dhanbad, for continuous support and motivation during the investigation period. Authors are also thankful to Malanjhkhand Copper Project (MCP) owned by Hindustan Copper Limited (HCL) in Balaghat district of Madhya Pradesh, India for providing with the project and funding to carrying out the investigation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bably Prasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prasad, B., Soni, A.K., Vishwakarma, A. et al. Evaluation of water quality near the Malanjhkhand copper mines, India, by use of multivariate analysis and a metal pollution index. Environ Earth Sci 79, 259 (2020). https://doi.org/10.1007/s12665-020-09002-6

Download citation

Keywords

  • Multivariate statistical analysis
  • Cluster analysis
  • Principal component analysis
  • Heavy metal pollution index
  • Malanjhkhand copper mines
  • India