Skip to main content
Log in

Hydrogeochemical modeling and dedolomitization processes in the Patagonian Boulders and Patagonia Formation in the eastern Patagonia, Argentina

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was to contribute to the understanding of the hydrogeological system of the Argentine Patagonia Extra-Andina region, focused on the Atlantic coastal area at 46° south latitude. The hydrogeochemical aspects of this aquifer system were taken into consideration for this purpose. The database includes 193 chemical analyses of major ions obtained through standard laboratory methods. A statistical analysis of the data, as well as the realization of hydrochemical models using PHREEQC software, was performed. The regional groundwater flows from west to east, with the recharge water being a sodium–chloride–bicarbonate type, and the discharge of water is typified as a sodium–sulfate–chloride type. The hydrogeochemical evolution of the aquifer shows a general augmentation of salinity and major ions in the groundwater-flow path, except for HCO3. Inverse hydrochemical modeling showed that gypsum dissolution with calcite precipitation, Ca2+/Na+ and Mg2+/Na+ ionic exchange, and dedolomitization are the main processes along the groundwater flow pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abid K, Zouari K, Dulinski M, Chkir N, Abidi B (2011) Hydrologic and geologic factors controlling groundwater geochemistry in the Turonian aquifer (southern Tunisia). Hydrogeol J 19(2):415–427. https://doi.org/10.1007/s10040-010-0668-z

    Article  Google Scholar 

  • APHA (1995) WPCF, standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC

    Google Scholar 

  • Appelo C, Postma D (1999) A consistent model for surface complexation on birnessite (−MnO2) and its application to a column experiment. Geochim Cosmochim Acta 63(19–20):3039–3048. https://doi.org/10.1016/S0016-7037(99)00231-8

    Article  Google Scholar 

  • Auge M, Wetten C, Baudino G, Bonorino G, Gianni R, González N, Grizinik M, Hernández M, Rodríguez J, Sisul A (2010) Hidrogeología de Argentina. Boletín Geológico y Minero 117(1):7–23

    Google Scholar 

  • Bischoff JL, Juliá R, Shanks WC III, Rosenbauer RJ (1994) Karstification without carbonic acid: bedrock dissolution by gypsum-driven dedolomitization. Geology 22(11):995–998. https://doi.org/10.1130/0091-7613(1994)022%3c0995:KWCABD%3e2.3.CO;2

    Article  Google Scholar 

  • Boix M, Gigli P (2010) Desafíos comunitarios y recomendaciones. Municipios de Río Gallegos y Caleta Olivia, Santa Cruz. Documento de Trabajo N, 56

  • CFI. Consejo Federal de Inversiones (1987a) Provisión de agua a Caleta Olivia. Batería de Bombeo Meseta Espinosa 2Informe final

  • CFI—Consejo Federal de Inversiones (1987b) Provisión de agua potable Las Heras. Estudio del Subalveo del Valle del Rio Deseado. Informe final

  • CFI—Consejo Federal de Inversiones (1991) Geohidrología del área noreste de la provincia de Santa Cruz. Investigaciones Aplicadas

  • CFI (1992) Provisión de agua a Caleta Olivia provincia de Santa Cruz. Informe final

  • Chebotarev I (1955) Metamorphism of natural waters in the crust of weathering—1. Geochim Cosmochim Acta 8(1–2):22–48. https://doi.org/10.1016/0016-7037(55)90015-6

    Article  Google Scholar 

  • de Barrio R, Panza J, Nullo F (1999) Jurásico y Cretácico del Macizo del Deseado, provincia de Santa Cruz. Geología Argentina 29(17):511–527

    Google Scholar 

  • Deike RG (1990) Dolomite dissolution rates and possible Holocene dedolomitization of water-bearing units in the Edwards aquifer, south-central Texas. J Hydrol 112(3–4):335–373. https://doi.org/10.1016/0022-1694(90)90023-Q

    Article  Google Scholar 

  • Del Valle H, Beltramone C (1987) Morfología de las acumulaciones calcáreas en algunos paleosuelos de Patagonia Oriental (Chubut). Ciencia del Suelo 5(1):77–87

    Google Scholar 

  • Edmunds W, Bath A, Miles D (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochimica et Cosmochimica Acta 46(11):2069–2081. https://doi.org/10.1016/0016-7037(82)90186-7

    Article  Google Scholar 

  • Feruglio E (1949) Descripción geológica de la Patagonia. In YPF (ed) I–III: Coni Buenos Aires

  • Hernández L, Hernández MA (2013) Características hidrolitológicas de las formaciones Patagonia y Santa Cruz. Cuenca del Golfo San Jorge. (Provincias de Chubut y Santa Cruz). Agua subterránea recurso estratégico EDULP La Plata 1:112–117

    Google Scholar 

  • Hernández MA, González N, Hernández L (2008) Late cenozoic geohydrology of extra-Andean Patagonia, Argentina. Dev Quat Sci 11:497–509. https://doi.org/10.1016/S1571-0866(07)10024-5

    Article  Google Scholar 

  • Isla FI, Espinosa M, Iantanos N (2015) Evolution of the Eastern flank of the North Patagonian Ice Field: the deactivation of the Deseado River (Argentina) and the activation of the Baker River (Chile). Zeitschrift für Geomorphologie 59(1):119–131

    Article  Google Scholar 

  • Lesta PJ (1968) Estratigrafía de la cuenca del Golfo San Jorge. Jornadas Geológicas Argentinas, 3 Actas 1:251–289

    Google Scholar 

  • Lesta P, Ferello R (1972) Región extraandina de Chubut y norte de Santa Cruz. Geología Regional Argentina 2:602–687

    Google Scholar 

  • Lhering H (1907) Les mollusques fossiles du Tertiaire et du Crétacé Supérieur de l’Argentine (Vol. Tomo VII: 1–611): Anales del Museo Nacional de Buenos Aires

  • Mandel J (1969) The partitioning of interaction in analysis of variance. J Res Natl Bur Stand Ser B 73:309–328

    Article  Google Scholar 

  • Martinez OA, Kutschker A (2011) The ‘Rodados Patagónicos’ (Patagonian shingle formation) of eastern Patagonia: environmental conditions of gravel sedimentation. Biol J Linn Soc 103(2):336–345. https://doi.org/10.1111/j.1095-8312.2011.01651.x

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-resources investigations report. US Geological Survey, Denver, Colorado, 99-4259

  • Perez C (2003) Técnicas Estadísticas con SPSS. Ed. Pearson Educación, S.A., Mexico

    Google Scholar 

  • Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26(9):1981–2014. https://doi.org/10.1029/WR026i009p01981

    Article  Google Scholar 

  • Raines MA, Dewers TA (1997) Dedolomitization as a driving mechanism for karst generation in Permian Blaine Formation, Southwestern Oklahoma, USA. Carbonates Evaporites 12(1):24–31. https://doi.org/10.1007/BF03175799

    Article  Google Scholar 

  • Simpson GG (1933) Stratigraphic nomenclature of the early Tertiary of central Patagonia. American Museum novitates, 644

  • Simpson GG (1935) Occurrence and relationships of the Río Chico fauna of Patagonia. American Museum of Natural History, New York

    Google Scholar 

  • Stoakes F, Verhoef M, Mahood R (2014) Evolution of a regional interconnected diagenetic aquifer in the lower Prairie Evaporite of northeast Alberta. In: Canadian Society of Petroleum Geologists, 2014 annual meeting, Calgary, Alberta, extended abstract, 2

  • Sylwan CA (2001) Geology of the Golfo San Jorge Basin, Argentina. J Iber Geol 27:123–157

    Google Scholar 

  • Thirathititham R, Whitaker F (2017) Charaterising water–rock interaction in a mixed carbonate-evaporite karstified aquifer system, Qatar. In: Paper presented at the AGU fall meeting abstracts

  • Tunik MA, Pazos PJ, Impiccini A, Lazo D, Aguirre-Urreta MB (2009) Dolomitized tidal cycles in the Agua de la Mula member of the Agrio formation (Lower Cretaceous), Neuquén Basin, Argentina. Latin Am J Sediment Basin Anal 16(1):29–43

    Google Scholar 

  • WWAP (United Nations World Water Assessment Programme) (2015) The United Nations World water development report 2015: water for a sustainable world. UNESCO, Paris

    Google Scholar 

  • Zambrano J, Urien C (1970) Geological outline of the basins in Southern Argentina and their continuation off the Atlantic shore. J Geophys Res 75(8):1363–1396. https://doi.org/10.1029/JB075i008p01363

    Article  Google Scholar 

Download references

Acknowledgements

This contribution has been possible thanks to the company “Servicios Públicos s.e. Prov. de Santa Cruz”. Also CONICET and the University National of Mar del Plata contributed facilities and some personnel work conducted in the field and lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Emilio Martinez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumann, G.O., Vital, M., Glok-Galli, M. et al. Hydrogeochemical modeling and dedolomitization processes in the Patagonian Boulders and Patagonia Formation in the eastern Patagonia, Argentina. Environ Earth Sci 78, 572 (2019). https://doi.org/10.1007/s12665-019-8583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8583-7

Keywords

Navigation