Advertisement

Statistical approach of the influence of petrography in mechanical properties and durability of granitic stones

  • P. Vazquez
  • N. Sánchez-Delgado
  • L. Carrizo
  • C. Thomachot-Schneider
  • F. J. Alonso
Thematic Issue
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability

Abstract

The influence of petrographic features on the strength of granitic stones is a wide studied topic which finds different correlations depending on the research and the granite type. The aim of this article was to provide an accurate statistical analysis in which the amount of analysed data did not imply any doubt about the representativity of the samples and the accuracy of the results. The focused principal component analysis was used because it allows to explain a determinate property in relation to several variables. In addition, the expression of the results was done as a simple and graphical representation that allowed to interpret the results in a global way. Data of texture, mineralogy and strength of 12 granites were obtained in this study and were completed by those of more than 100 granites obtained from the literature. The durability of the twelve granite characterized was also assessed. A thermal fatigue test was carried out in 5 × 5 × 5 cm cubes revealing that the thermal expansion experimented by the different minerals was enough to produce variations in the crack network even if temperature was lower than the microfissuration threshold.

Keywords

Granites Mechanical properties Statistics Petrography Mineralogy Texture 

Notes

Acknowledgements

This research was funded by the project from Principado de Asturias IB09-080. The authors acknowledge the technical support from Materials’ group from the Polytechnical University of Oviedo and the several enterprises that provided the granitic stones.

References

  1. Arif M, Bukhari SWH, Muhammad N, Sajid M (2013) Petrography and physicomechanical properties of rocks from the Ambela Granitic Complex, NW Pakistan. Sci World J 2013:1–8.  https://doi.org/10.1155/2013/349381 Google Scholar
  2. Baltuille JM, Ferrero Á, Monteserín V, Gumiel P, Bellido F, Araujo M (2004) Estudio geológico-minero de la concesión de explotación “Benedicta” (no. 1.544), O Porriño (Pontevedra). En: Proyecto de prórroga de la C.E. “Benedicta” no 1.544. Informe de POCASA-Porriñesa de Canteiras, S.A. (inédito). Tomo I, 225 pp., y planosGoogle Scholar
  3. Basu A, Celestino TB, Bortolucci AA (2009) Evaluation of rock mechanical behaviours under uniaxial compression with reference to assessed weathering grades. Rock Mech Rock Eng 42:73–93.  https://doi.org/10.1007/s00603-008-0170-2 CrossRefGoogle Scholar
  4. Bellido F, Monteserín V, Gumiel P, Ferrero A, Baltuille JM, López MT (2005) Características petrológicas y geoquímicas de las principales variedades de granitos ornamentales del macizo de “O Porriño”(SO de Galicia). Bol Geol Min 116(4):331–349Google Scholar
  5. Broch E, Franklin J (1972) The point-load strength test. Int J Rock Mech Min Sci Geomech Abstr 9:669–676.  https://doi.org/10.1016/0148-9062(72)90030-7 CrossRefGoogle Scholar
  6. Buyuksagis I, Goktan R (2007) The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. Int J Rock Mech Min Sci 44:299–307.  https://doi.org/10.1016/j.ijrmms.2006.07.008 CrossRefGoogle Scholar
  7. Ceryan S, Tudes S, Ceryan N (2008) Influence of weathering on the engineering properties of Harsit granitic rocks (NE Turkey). Bull Eng Geol Environ 67:97–104.  https://doi.org/10.1007/s10064-007-0115-0 CrossRefGoogle Scholar
  8. Çobanoğlu I, Çelik SB (2008) Estimation of uniaxial compressive strength from point load strength, schmidt hardness and P-wave velocity. Bull Eng Geol Environ 67:491–498.  https://doi.org/10.1007/s10064-008-0158-x CrossRefGoogle Scholar
  9. del Potro R, Hürlimann M (2009) A comparison of different indirect techniques to evaluate volcanic intact rock strength. Rock Mech Rock Eng 42:931–938.  https://doi.org/10.1007/s00603-008-0001-5 CrossRefGoogle Scholar
  10. del Río LM, López F, Esteban F, Tejado J, Mota M, González I, Emeterio JS, Ramos A (2006) Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain). Ultrasonics.  https://doi.org/10.1016/j.ultras.2006.05.098 Google Scholar
  11. Eberhardt E, Stimpson B, Stead D (1999) Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32:81–99.  https://doi.org/10.1007/s006030050026 CrossRefGoogle Scholar
  12. Er S, Tuğrul A (2016) Correlation of physico-mechanical properties of granitic rocks with Cerchar Abrasivity Index in Turkey. Measurement 91:114–123.  https://doi.org/10.1016/j.measurement.2016.05.034 CrossRefGoogle Scholar
  13. Falissard B (1999) Focused principal component analysis: looking at a correlation matrix with a particular interest in a given variable. J Comput Graph Stat 8:906.  https://doi.org/10.2307/1390833 Google Scholar
  14. Falissard B, Corruble E, Mallet L, Hardy P (2001) Focused principal component analysis: a promising approach for confirming findings of exploratory analysis? Int J Methods Psychiatr Res 10:191–195.  https://doi.org/10.1002/mpr.115 CrossRefGoogle Scholar
  15. Farias P, Gallastegui G, González Lodeiro F, Marquínez J, Martín Parra LM, Martínez Catalán JR, Rodríguez Fernández LR (1987) Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central. Mem Fac Ciênc, Univ Porto 1:411–431Google Scholar
  16. Fener M, Kahraman S, Bilgil A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38:329–343.  https://doi.org/10.1007/s00603-005-0061-8 CrossRefGoogle Scholar
  17. Freire-Lista D, Fort R, Varas-Muriel M (2015) Freeze–thaw fracturing in building granites. Cold Reg Sci Technol 113:40–51.  https://doi.org/10.1016/j.coldregions.2015.01.008 CrossRefGoogle Scholar
  18. Freire-Lista D, Fort R, Varas-Muriel M (2016) Thermal stress-induced microcracking in building granite. Eng Geol 206:83–93.  https://doi.org/10.1016/j.enggeo.2016.03.005 CrossRefGoogle Scholar
  19. García-Garzón J (1983). Informe sobre tres dataciones realizadas en Galicia (referencias GR2MR, GDTPO, GDPBO) en los laboratorios del IGME. En Mapa Geológico de España, E. 1:200.000 Madrid, Ministerio de Industria, Servicio de Publicaciones, 2ª Serie. Primera Edición (MAGNA); Hojas no 16––26: Pontevedra-La Guardia. IGMEGoogle Scholar
  20. Gómez-Heras M, Smith BJ, Fort R (2006) Surface temperature differences between minerals in crystalline rocks: implications for granular disaggregation of granites through thermal fatigue. Geomorphology 78:236–249.  https://doi.org/10.1016/j.geomorph.2005.12.013 CrossRefGoogle Scholar
  21. Grant WH (1969) Abrasion pH, an index of chemical weathering. Clays Clay Miner 17:151–155.  https://doi.org/10.1346/ccmn.1969.0170303 CrossRefGoogle Scholar
  22. Gunsallus K, Kulhawy F (1984) A comparative evaluation of rock strength measures. Int J Rock Mech Min Sci Geomech Abstr 21:233–248.  https://doi.org/10.1016/0148-9062(84)92680-9 CrossRefGoogle Scholar
  23. Gupta AS, Rao KS (1998) Index properties of weathered rocks: inter-relationships and applicability. Bull Eng Geol Environ 57:161–172.  https://doi.org/10.1007/s100640050032 CrossRefGoogle Scholar
  24. Gupta A, Rao KS (2000) Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state. Eng Geol 56:257–274.  https://doi.org/10.1016/s0013-7952(99)00090-3 CrossRefGoogle Scholar
  25. Härmä P, Selonen O (2008) Surface weathering of rapakivi granite outcrops-implications for natural stone exploration and quality evaluation. Est J Earth Sci 57(3):135–148.  https://doi.org/10.3176/earth.2008.3.02 CrossRefGoogle Scholar
  26. Hoffmann A, Siegesmund S (2007) The dimension stone potential of Thailand—overview and granite site investigations. Geol Soc Lond Spec Publ 271(1):43–54CrossRefGoogle Scholar
  27. Homand-Etienne F, Troalen J-P (1984) Behaviour of granites and limestones subjected to slow and homogeneous temperature changes. Eng Geol 20:219–233.  https://doi.org/10.1016/0013-7952(84)90002-4 CrossRefGoogle Scholar
  28. IGME (1967) Mapa Geológico de España Escala 1:50.000 Explicación de la hoja no 920. Constantina (Sevilla). Instituto Geológico y Minero de España, MadridGoogle Scholar
  29. IGME (2004a) Mapa de rocas y minerales industriales de Galicia. Orense-Verín (17–27), E. 1:200.000Google Scholar
  30. IGME (2004b). Mapa de rocas y minerales industriales de Galicia. Pontevedra-A Guarda (16–26), E. 1:200.000Google Scholar
  31. Irfan TY, Dearman WR (1978) Engineering classification and index properties of a weathered granite. Bull Int Assoc Eng Geol 17:79–90.  https://doi.org/10.1007/bf02634696 CrossRefGoogle Scholar
  32. Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994.  https://doi.org/10.1016/s1365-1609(01)00039-9 CrossRefGoogle Scholar
  33. Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42:584–589.  https://doi.org/10.1016/j.ijrmms.2005.02.004 CrossRefGoogle Scholar
  34. Keikha T, Keykha HA (2013) Correlation between mineralogical characteristics and engineering properties of granitic rocks. Electron J Geotech Eng 18:4055–4065Google Scholar
  35. Khalil YS, Arif M, Bangash HA, Sajid M, Muhammad N (2014) Petrographic and structural controls on geotechnical feasibility of dam sites: implications from investigation at Sher Dara area (Swabi), north-western Pakistan. Arab J Geosci 8:5067–5079.  https://doi.org/10.1007/s12517-014-1510-z CrossRefGoogle Scholar
  36. Koch A, Siegesmund S (2004) The combined effect of moisture and temperature on the anomalous expansion behaviour of marble. Environ Geol.  https://doi.org/10.1007/s00254-004-1037-9 Google Scholar
  37. Kudo Y, Sano O, Murashige N, Mizuta Y, Nakagawa K (1992) Stress-induced crack path in Aji granite under tensile stress. Pure Appl Geophys PAGEOPH 138:641–656.  https://doi.org/10.1007/bf00876342 CrossRefGoogle Scholar
  38. Liu S, Faisal Anwar AHM, Kim BC, Ichikawa Y (2006) Observation of microcracks in granite using a confocal laser scanning microscope. Int J Rock Mech Min Sci 43:1293–1305CrossRefGoogle Scholar
  39. Menéndez B, David C, Darot M (1999) A study of the crack network in thermally and mechanically cracked granite samples using confocal scanning laser microscopy. Phys Chem Earth Part A Solid Earth Geod 24:627–632.  https://doi.org/10.1016/s1464-1895(99)00091-5 CrossRefGoogle Scholar
  40. Mol L, Gomez-Heras M, Brassey C, Green O, Blenkinsop T (2017) The benefit of a tough skin: bullet holes, weathering and the preservation of heritage. R Soc Open Sci 4:160335.  https://doi.org/10.1098/rsos.160335 CrossRefGoogle Scholar
  41. Morales De Marco M, Oyhantçabal P, Stein KJ, Siegesmund S (2013) Granitic dimensional stones in Uruguay: evaluation and assessment of potential resources. Environ Earth Sci 69(4):1397–1438CrossRefGoogle Scholar
  42. Mosch S (2009) Optimierung der exploration, Gewinnung und Materialcharakterisierung von Naturwerksteinen. http://webdoc.sub.gwdg.de/diss/2009/mosch/mosch.pdf
  43. Mosch S, Siegesmund S (2007) Statistische Bewertung gesteintechnischer Kenndaten von Natursteinen. Z dtsch Ges Geowiss 158(4):821–868Google Scholar
  44. Ordaz J, Esbert RM, Suarez de Rio LM (1978) A proposed petrographical index to define mineral and rock deterioration in granite rocks. Deterioration and protection of stone monuments, RILEM, Paris 2.6:16 pGoogle Scholar
  45. Přikryl R (2001) Some microstructural aspects of strength variation in rocks. Int J Rock Mech Min Sci 38:671–682.  https://doi.org/10.1016/s1365-1609(01)00031-4 CrossRefGoogle Scholar
  46. Přikryl R (2006) Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Eng Geol 87:149–162.  https://doi.org/10.1016/j.enggeo.2006.05.011 CrossRefGoogle Scholar
  47. Ruiz de Argandoña VG, Calleja L, Montoto M (1985) Determinación experimental del umbral de microfisuración térmica de la roca matriz o intact rock. Trab Geol 15(15):299–307Google Scholar
  48. Sajid M, Arif M (2015) Reliance of physico-mechanical properties on petrographic characteristics: consequences from the study of Utla granites, north-west Pakistan. Bull Eng Geol Environ 74:1321–1330.  https://doi.org/10.1007/s10064-014-0690-9 CrossRefGoogle Scholar
  49. Sajid M, Coggan J, Arif M, Andersen J, Rollinson G (2016) Petrographic features as an effective indicator for the variation in strength of granites. Eng Geol 202:44–54.  https://doi.org/10.1016/j.enggeo.2016.01.001 CrossRefGoogle Scholar
  50. Schön JH (1996) Physical properties of rocks. Fundamentals and principles of petrophysics. Elsevier, New YorkGoogle Scholar
  51. Siegesmund S, Sousa L, Knell C (2018) Thermal expansion of granitoids. Environ Earth Sci 77(2):41CrossRefGoogle Scholar
  52. Sousa LMO (2013) The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones. Environ Earth Sci 69:1333–1346.  https://doi.org/10.1007/s12665-012-2036-x CrossRefGoogle Scholar
  53. Sousa LM, Río LMSD, Calleja L, Argandoña VGRD, Rey AR (2005) Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77:153–168.  https://doi.org/10.1016/j.enggeo.2004.10.001 CrossRefGoogle Scholar
  54. Tuğrul A, Zarif I (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317.  https://doi.org/10.1016/s0013-7952(98)00071-4 CrossRefGoogle Scholar
  55. Vasconcelos G, Lourenço P, Alves C, Pamplona J (2008a) Experimental characterization of the tensile behaviour of granites. Int J Rock Mech Min Sci 45:268–277.  https://doi.org/10.1016/j.ijrmms.2007.04.011 CrossRefGoogle Scholar
  56. Vasconcelos G, Lourenço P, Alves C, Pamplona J (2008b) Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics 48:453–466.  https://doi.org/10.1016/j.ultras.2008.03.008 CrossRefGoogle Scholar
  57. Vazquez P, Acuña M, Benavente D, Gibeaux S, Navarro I, Gomez-Heras M (2016) Evolution of surface properties of ornamental granitoids exposed to high temperatures. Constr Build Mater 104:263–275.  https://doi.org/10.1016/j.conbuildmat.2015.12.051 CrossRefGoogle Scholar
  58. Vázquez P, Alonso F, Esbert R, Ordaz J (2010) Ornamental granites: relationships between p-waves velocity, water capillary absorption and the crack network. Constr Build Mater 24:2536–2541.  https://doi.org/10.1016/j.conbuildmat.2010.06.002 CrossRefGoogle Scholar
  59. Vázquez P, Siegesmund S, Alonso FJ (2011) Bowing of dimensional granitic stones. Environ Earth Sci 63:1603–1612.  https://doi.org/10.1007/s12665-010-0882-y CrossRefGoogle Scholar
  60. Vázquez P, Shushakova V, Gómez-Heras M (2015) Influence of mineralogy on granite decay induced by temperature increase: experimental observations and stress simulation. Eng Geol 189:58–67CrossRefGoogle Scholar
  61. Vera JA (ed) (2004) Geología de España. SGE-IGME, Madrid, 890p. ISBN 84-7840-546-1Google Scholar
  62. Winkler EM (1997) Stone in architecture. Springer, Berlin.  https://doi.org/10.1007/978-3-662-10070-7 CrossRefGoogle Scholar
  63. Yilmaz NG, Karaca Z, Goktan R, Akal C (2009) Relative brittleness characterization of some selected granitic building stones: influence of mineral grain size. Constr Build Mater 23:370–375.  https://doi.org/10.1016/j.conbuildmat.2007.11.014 CrossRefGoogle Scholar
  64. Yilmaz N, Mete Goktan R, Kibici Y (2011) Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones. Int J Rock Mech Min Sci 48:506–513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GEGENAA EA 3795University of Reims Champagne-ArdenneReimsFrance
  2. 2.Fundación Centro Tecnológico del Granito de GaliciaO PorrinoSpain
  3. 3.Facultad de GeologíaUniversidad de OviedoOviedoSpain

Personalised recommendations