Advertisement

A GIS mapping assessment of the suitability of the Oued Rmel aquifer for irrigation in the Zaghouan district (north-eastern Tunisia)

  • Meriem Ameur
  • Fadoua Hamzaoui-Azaza
  • Lilia Ben Cheikha
  • Toqeer Ahmed
  • Moncef Gueddari
Original Article
  • 89 Downloads

Abstract

A total of twenty-three water samples were collected in winter 2013 to assess groundwater quality in the Oued Rmel aquifer in the Zaghouan governate in Tunisia. These samples were subject to in-field measurements of some physico-chemical parameters (temperature, pH, and salinity), and laboratory analysis of major elements. Several parameters were used to assess the quality of water destined for irrigation, including electrical conductivity (EC) and sodium adsorption ratio (SAR). As part of this work, GIS was used to study spatial distributions of SAR, EC, residual sodium carbonate, sodium percentage (%Na), Doneen’s permeability index, Kelly’s ratio, and magnesium hazard and, therefore, evaluated the water quality of Oued Rmel (good, fair, or poor) regarding irrigation. The major ions most abundantly found in the waters of Oued Rmel were in the following order: Na+ > Ca2+ > Mg2+ > K+ and Cl > SO42− > HCO3. 56% of water samples from the Oued Rmel aquifer showed a low alkalinization risk, where SAR was lower than 10, 39% have a medium soil destabilization risks (10 < SAR < 18), and just 5% indicated high alkalinity hazards (SAR > 26). Samples of water intended for irrigation showed a medium to high sodicity and alkalinization risk. It is expected that output may help in assessing the impacts of water quality of the Oued Rmel aquifer used for irrigation.

Keywords

GIS Water resources Water quality for irrigation Oued Rmel aquifer Tunisia 

Notes

Acknowledgements

The authors would like to express their deep gratitude to the Regional Direction of Agriculture and Water Resources of Zaghouan (North-eastern Tunisia) and the Resources Water Direction of Tunis (DGRE) for their valuable aid during the sampling campaigns.

References

  1. Ameur M, Hamzaoui-Azaza F, Gueddari M (2015a) Suitability for human consumption and agriculture purposes of Sminja aquifer groundwater in Zaghouan (north-east of Tunisia) using GIS and geochemistry techniques. Environ Geochem Health 38(5):1147–1167.  https://doi.org/10.1007/s10653-015-9780-2 CrossRefGoogle Scholar
  2. Ameur M, Hamzaoui-Azaza F, Gueddari M (2015b) Note sur l’apport du système d’information géographique à l’évaluation de la qualité des eaux de la nappe d’Oued Rmel (nord-est de la Tunisie) vis-à-vis des nitrates et de la salinité. Geo-Eco-Trop 39:309–316Google Scholar
  3. Ameur M, Hamzaoui-Azaza F, Gueddari M (2016) Nitrate contamination of Sminja aquifer groundwater in Zaghouan, northeast Tunisia: WQI and GIS assessments. Desalin Water Treat 57:23698–23708CrossRefGoogle Scholar
  4. Arnould M (1946) Etude géologique et hydrogéologique du bassin de l’oued Zaghouan, oued Rmel (Plaine à l’Est de Zaghouan : Ste Marie du Zit, Zriba). DGRE. Tunis Rapp, Int, p 42Google Scholar
  5. Attia R, Agrébaoui S, Hamrouni H (2005) Application des Directives CAR/PAP pour la formulation d’un programme de gestion de contrôle de l’érosion et de la désertification. Cas du bassin versant de l’Oued Rmel. Rapport final. Programme d’Actions Prioritaires (PNUE).78pGoogle Scholar
  6. Ayars J (1993) Long term use of saline water for irrigation. Irrig Sci 14:27–34CrossRefGoogle Scholar
  7. Ayers RS, Westcot DW (1994) Water quality for agriculture, FAO irrigation and drainage paper, 29(1). Food and Agriculture Organization of the United Nation, Rome, pp 1–95Google Scholar
  8. Briki H (2013) Analyse de structures géologiques de l’Atlas nord-oriental dans la région de Bouficha-Enfidha. Master report. University of Tunis el ManarGoogle Scholar
  9. Cariou A (2015) L’eau et l’aménagement du territoire en Asie centrale. Cahiers d’Asie Centrale. 19–58Google Scholar
  10. DDR (2012) Direction de Développement Régional de Zaghouan. Valorisation des ressources du Gouvernorat de Zaghouan. Ministère du Développement Régional et de la Planification. Rapp. Int. TunisiaGoogle Scholar
  11. DGRE (1985 à 2015) Annuaires annuels d’exploitation des nappes profondesGoogle Scholar
  12. Doneen LD (1964) Note on Water Quality in Agriculture. Published as a Water Science and Engineering paper 4001, Department of Water Science and Engineering, University of California, Devis, USAGoogle Scholar
  13. Eaton FM (1950) Significance of carbonates in irrigated waters. Soil Sci 69:123–134CrossRefGoogle Scholar
  14. Gupta SK, Gupta IC (1987) Management of saline soils and water. Oxford and IBH publication Co, New Delhi, p 399Google Scholar
  15. Hamzaoui-Azaza F, AmeurM Bouhlila R, Gueddari M (2012) Geohemical Characterization of groundwater in a Miocene Aquifer, Southeastern Tunisia. Environ Eng Geosci 18:159–174CrossRefGoogle Scholar
  16. Jallouli A (2000) Tunisien thermal. Thermalisme Office. pp 37–42Google Scholar
  17. Kelly WP (1963) Use of saline irrigation water. Soil Sci 95(4):355–391Google Scholar
  18. Khanfir R (1984) Exploitation des nappes d’eau souterraine du gouvernorat de Zaghouan. Rapp. Int. DGRE. TunisiaGoogle Scholar
  19. Paliwal KV (1972) Irrigation with saline water. Monogram, no. 2 (New series), New Delhi, IARI, 198Google Scholar
  20. Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S (2004) Water resources: agricultural and environmental issues. Bioscience 54:909–918CrossRefGoogle Scholar
  21. Ragunath HM (1987) Groundwater. Wiley Eastern, New DelhiGoogle Scholar
  22. Rekaya M (1981) Contribution à l’étude hydrogéologique du bassin versant de l’Oued Rmel. Thèse de 3ème cycle, Université Pierre et Marie Curie Paris VI, 122 pGoogle Scholar
  23. Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, Smith J (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio J Human Environ 46(1):4–17CrossRefGoogle Scholar
  24. Rodier J (2009) L’analyse de l’eau : Eaux naturelles, eaux résiduaires, eau de mer. 9ème édition. Dunod ParisGoogle Scholar
  25. Soussi M (2000) Le Jurassique de la Tunisie atlasique : stratigraphie, dynamique sédimentaire. Thèse d’état, FST, Univ. Tunis II, Paléogéographie et intérêt pétrolier, p 661Google Scholar
  26. Subba Rao N (2006) Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environ Geol 49:413–429CrossRefGoogle Scholar
  27. Todd DK (1980) Groundwater hydrology. John Wiley and Sons Inc., New York, pp 10–138Google Scholar
  28. Turki MM (1985) Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. Thèse Doc., FSTGoogle Scholar
  29. Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Rajiv Ganthi R, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ Monit Assess 171:595–609CrossRefGoogle Scholar
  30. WHO (2011) Guidelines for drinking-water quality-4th ed. Geneva. World Health Organization, p 564Google Scholar
  31. Wilcox LV (1948) The quality of water for irrigation use. Technical bulletin, vol 962. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  32. Wilcox LV (1955) Classification and use of irrigation waters, U.S. Geological Department Agric. Circ. 969, Washington, DC, pp 19Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Meriem Ameur
    • 1
  • Fadoua Hamzaoui-Azaza
    • 1
  • Lilia Ben Cheikha
    • 1
    • 2
  • Toqeer Ahmed
    • 3
  • Moncef Gueddari
    • 1
  1. 1.Research Unit of Geochemistry and Environmental Geology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.National Center for Nuclear Sciences and TechnologiesSidi ThabetTunisia
  3. 3.Centre for Climate Research and Development (CCRD)Comsats Institute of Information Technology (CIIT)IslamabadPakistan

Personalised recommendations