Advertisement

Mercury sink in Amazon rainforest: soil geochemical data from the Tapajos National Forest, Brazil

  • Bernardino R. Figueiredo
  • Alfredo B. De Campos
  • Rodrigo Da Silva
  • Nádia C. Hoffman
Original Article
  • 103 Downloads

Abstract

Atmospheric mercury sink in Amazonian rainforest was tested in this work. Forest soil was analyzed for 11 soil profiles at depths of 0–40 cm in the northern portion of the Tapajos National Forest, Brazilian Amazon. Major oxides and Hg contents in soil and rock were determined by XRF and by Zeeman AAS, respectively. A mercury content of 146 μg kg−1 was found in the bedrock, whereas the mercury content in soil averaged 240 μg kg−1. The soil pH varied from 4.4 to 5.2 and the organic matter contents varied from 1.4 to 7.5%. Enrichment factors of Hg for soil were calculated in relation to the parental bedrock assuming aluminum as immobile element. The lower soil layers presented mercury enrichment of 29–98% in comparison to the bedrock. The upper soil layers showed mercury enrichment of 4–24% in comparison to lower soil layers. Mercury in soil was highly correlated with Al, Fe, and Ti; however, no significant correlation was observed between Hg and organic matter contents. All results pointed to mercury retention in forest soils as a result of the combined action of rock weathering processes and continuous input of metal from the atmosphere, estimated to be between 31 and 46% of the total Hg in the upper soil layers. These results are consistent with the hypothesis that the Amazon rainforest is a sink for atmospheric Hg and they also highlight the role of rainforest as a barrier for a number of substances associated with suspended atmospheric particulate.

Keywords

Mercury Soil geochemistry Tapajos National Forest Amazon Brazil 

Notes

Acknowledgements

The authors are grateful to the Chico Mendes Institute (ICM-BIO) for the permission to access the study area. The assistance of the staff of the Laboratory of Geochemical Analysis at UNICAMP was much appreciated. The authors also benefited from the financial support provided by the National Council for Science and Technology Development (CNPq—Grants 473238/2011-0, 304446/2011-4 and 305119/2015-0).

References

  1. Arbage MCA, Figueiredo BR, Da Silva R, Khader CAM (2011) Análise estatística descritiva da velocidade média e variabilidade da direção do vento na Floresta Nacional do Tapajós/PA. In: VII Brazilian micrometeorology workshop, Santa Maria, AnaisGoogle Scholar
  2. Artaxo P, Storms H, Bruynseels F, Grieken RV, Maenhaut W (1988) Composition and sources of aerosols from the Amazon Basin. J Geophys Res 93:1605–1615CrossRefGoogle Scholar
  3. Barrow NJ, Cox VC (1992) The effects of pH and chloride concentration on mercury sorption. I. By goethite. J Soil Sci 43:295–304CrossRefGoogle Scholar
  4. Bastos WR, Lacerda LD (2004) A contaminação por mercúrio na bacia do Rio Madeira: uma breve revisão. Geoch Brasil 18(2):99–114Google Scholar
  5. Bidone ED, Castilhos ZC, Cid de Souza TM, Lacerda LD (1997) Fish Contamination and human exposure to mercury in the Tapajós River Basin, Pará State, Amazon, Brazil: a screening approach. Bull Environ Contam Toxicol 59:194–201CrossRefGoogle Scholar
  6. Brabo ES (2010) Geoquímica do Mercúrio na Bacia do Rio Tapajós: do Natural ao Antropogênico, In: IM Jesus, BS Carneiro, RS Angélica, ECO Santos (Orgs.) Série Mercúrio na Amazônia. Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, p 274Google Scholar
  7. CPRM (2006) Mapa Geológico do Estado do Amazonas, 1:1.000.000, CPRM-SUREG ManausGoogle Scholar
  8. De Oliveira SMB, Melfi AJ, Fostier A-H, Forti MC, Fávaro DIT, Boulet R (2001) Soils as an important sink for mercury in the Amazon. Water Air Soil Pollut 26:321–337CrossRefGoogle Scholar
  9. EMBRAPA (1997) Manual de métodos de análise de solo/Centro Nacional de. Pesquisa de Solos, 2. ed. rev. atual. – Rio de Janeiro, p 212Google Scholar
  10. Fadini PS, Jardim WF (2001) Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? Sci Total Environ 275(1–3):71–82CrossRefGoogle Scholar
  11. Figueiredo BR, De Campos AB, Da Silva R, Angelica RS, Hoffman N (2015) Influência da deposição de particulados atmosféricos na composição do solo da Floresta Nacional do Tapajós. In: Paulo SSG, Aline MM de Lima (Orgs) Contribuições à Geologia da Amazônia, vol 9. Belém, SBG-Núcleo Norte, pp 217–223Google Scholar
  12. Figueiredo BR, De Campos AB, Silva R, Angélica RS, Hoffman N (2017) Influência da deposição atmosférica na composição química do solo na Floresta Nacional do Tapajos, Amazônia. In: AM, Lima M, Gorayeb PSS (Orgs) Contribuições à Geologia da Amazônia, Belém, Sociedade Brasileira de Geologia—Núcleo Norte, vol 10, pp 23–31Google Scholar
  13. Fostier A-H, Forti MC, Guimarães JRD, Melfi AJ, Boulet R, Espirito Santo CM, Krug FJ (2000) Mercury fluxes in a natural forested Amazonian catchment—Serra do Navio, Amapá State, Brazil. Sci Total Environ 260:201–211CrossRefGoogle Scholar
  14. Fostier A-H, Melendez-Perez JJ, Richter L (2015) Litter mercury deposition in the Amazonian rainforest. Emviron Pollut 206:605–610CrossRefGoogle Scholar
  15. Gonçalves CVM, Figueiredo BR, Alves C, Cardoso AA, Da Silva R, Kanzawa SH, Vicente AM (2016) Chemical characterisation of total suspended particulate matter from a remote area in Amazonia. Atmos Res 182:102–113 (print) CrossRefGoogle Scholar
  16. Guedron S, Grimaldi C, Chauvel C, Spadini L, Grimaldi M (2006) Weathering versus atmospheric contributions to mercury concentrations in French Guiana soils. Appl Geochem 21:2010–2022CrossRefGoogle Scholar
  17. IBGE (2008) Pedologia, Mapa Esquemático de Solos. IBGE, Estado do Pará, BrasilGoogle Scholar
  18. Lindqvist O, Rodhe H (1985) Atmospheric mercury—a review. Tellus Sér B 37B(3):136–159CrossRefGoogle Scholar
  19. Magarelli G (2006) Fluxos de mercúrio gasoso na interface solo/atmosfera na Bacia do Rio Negro utilizando câmaras dinâmicas de fluxo. Universidade Estadual de Campinas, Tese de Doutorado, p 125Google Scholar
  20. Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Enviro Res Sect A 77:73–78CrossRefGoogle Scholar
  21. Martin ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q, Goldstein AH, Guenther A, Heald CL, Mayol-Bracero OL, McMurry PH, Pauliquevis T, Pöschl U, Prather KA, Roberts GC, Saleska SR, Silva Dias MA, Spracklen DV, Swietlicki E, Trebs I (2010) Sources and properties of Amazonian aerosol particles. Rev Geophys 48(2).  https://doi.org/10.1029/2008RG000280
  22. Mascarenhas AFS, Brabo ES, Silva AP, Fayal KF, Jesus IM, Santos ECO (2004) Avaliação da concentração de mercúrio em sedimentos e material particulado no rio Acre, estado do Acre, Brasil. Acta Amazon 34(1):61–68CrossRefGoogle Scholar
  23. Mason R (2008) Mercury emissions from natural processes and their importance in the global mercury cycle. In: N Pirrone, R Mason (eds) Mercury fate and transport in the global atmosphere: measurements, models and policy implications. UNEP Global Mercury Partnership Report. pp 130–144Google Scholar
  24. Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58:3191–3198CrossRefGoogle Scholar
  25. Pacyna JM (1996) Monitoring and assessment of metal contaminants in the air. In: Chang LW (ed) Toxicology of metals. CRC Press Inc, Boca Raton, pp 9–28Google Scholar
  26. Roulet M, Lucotte M (1995) Geochemistry of mercury in pristine and flooded ferralitic soils of a tropical rain forest in French Guyana, South America. Water Air Soil Pollut 80:1079–1088CrossRefGoogle Scholar
  27. Roulet M, Lucotte M, Saint-Aubin A, Tran S, Rhéault I, Farella N, De Jesus Da Silva Silva E, Dezencourt J, Sousa Passos C-J, Santos Soares G, Guimarães JRD, Mergler D, Amorim M (1998) The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chãoformation of the lower Tapajós River Valley, Pará State, Brazil. Sci Total Environ 223:1–24CrossRefGoogle Scholar
  28. Schroeder W, Munthes J (1998) Atmospheric mercury—an overview. Atmos Environ 32(5):809–822CrossRefGoogle Scholar
  29. Smith KS, Huyck HLO (1999) An overview of the abundance, relative mobility, bioavailability and toxicity of metals. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, reviews in economic geology, vol 6A. Society of Economic Geologists, Littleton, pp 29–70Google Scholar
  30. Teixeira DC (2008) Deposição do mercúrio através da serapilheira na Mata Atântica, Parque Estadual da Pedra Branca. Dissertação de Mestrado, Universidade Federal Fluminense, RJ, p 85Google Scholar
  31. Teixeira DC, Lacerda LD, Silva-Filho EV (2017) Mercury sequestration by rainforests: the influence of microclimate and different successional stages. Chemsphere 168:1186–1193CrossRefGoogle Scholar
  32. Vasquez ML, Sousa CS, Carvalho JMA (2008) Mapa Geológico e de Recursos Minerais do Estado do Pará, escala 1:1.000.000, CPRM – Serviço Geológico do BrasilGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Campinas – UNICAMPCampinasBrazil
  2. 2.Federal University of West Para – UFOPASantarémBrazil

Personalised recommendations