Traces of ancient geysers preserved in the travertine of Siwaqa, Jordan: conditions of their formation

  • Ikhlas Alhejoj
  • Klaus Bandel
  • Elias Salameh
  • Khitam Alzughoul
Original Article


A Pleistocene travertine quarrying on a hill in Siwaqa area, central Jordan, excavated solid, well-stratified travertine beds of about 12 m in thickness. The fabric and composition of the travertine indicate original deposition from hot spring water. At present, the area and its surrounding are devoid of any perennial water, except for periodic flood flows that collect at Siwaqa dam 4–5 km to the west of the quarry area, joining the catchment of the River Mujib. The travertine overlies combusted oil shale. The exposed hot spring travertine consists predominantly of well-bedded limestone, interrupted by horizons of chaotic angular debris, indicating ejection from below such as those produced by geysers. The article discusses the origins of the mottled and angular rock fragments, their transportation due to explosive geyser, the conditions and possible causes that produced the pressures leading to steam outbreaks and are responsible for the observed redistribution of travertine layers.


Hot spring travertine Gas explosions Geysers Mottled zone Self-combustion Paleoenvironments 


  1. Alhejoj I, Bandel K, Salameh E (2015) Floral species as environmental quality indicators in Jordan: high salinity and alkalinity environments. J Environ Prot 6:494–514CrossRefGoogle Scholar
  2. Alqudah M, Hussein M, Boorn S, Podlaha O, Mutterlose J (2015) Biostratigraphy and depositional setting of Maastrichtian–Eocene oil shales from Jordan. Mar Pet Geol 60(1):87–104CrossRefGoogle Scholar
  3. Bandel K, Mikbel S (1985) Origin and deposition of phosphate ores from the Upper Cretaceous of Ruseifa (Amman, Jordan). Mitteilungen aus dem Geologisch Palaeontologischen Institut der Universitaet Hamburg 59(1):167–188Google Scholar
  4. Bandel K, Salameh E (2013) Geologic development of Jordan. Evolution of its rocks and life. The University of Jordan Press, Amman, pp 1–278Google Scholar
  5. Bandel K, Alhejoj I, Salameh E (2016) Geologic evolution of the Tertiary–Quaternary Jordan Valley with introduction of the Bakura Formation. Freiberger Forschungshefte C 550(23):103–135Google Scholar
  6. Barjous M (1986) The geology of Siwaqa. Bull. 4, NRA, Amman, JordanGoogle Scholar
  7. Bender F (1968) Geologie von Jordanian. Beitrage zur Regionalen Geologie der Erde, Band 7. Borntraeger, BerlinGoogle Scholar
  8. Bentor YK, Vroman A (1960) The Geological map of Israel, Sheet 16, MountSedom. Geological Survey of Israel, JerusalemGoogle Scholar
  9. Bentor Y, Gross S, Heller L (1963) Some unusual minerals from the ‘‘Mottled Zone’’ complex, Israel. Am Mineral 48:924–930Google Scholar
  10. Blankenhorn M (1912) Naturwissenschaftliche Studien am Toten Meer und im Jordantal. Berlin (Friedländer)Google Scholar
  11. Böhme M, Spassov N, Ebner M, Geraads D, Hristova L, Kirscher U (2017) Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLoS ONE 12(5):e0177347CrossRefGoogle Scholar
  12. Bryan TS (1995) The Geysers of Yellowstone. University Press of Colorado, BoulderGoogle Scholar
  13. Bzour A, Khoury H, Oran S (2016) Assessment of bioavailability of chromium (Cr), vanadium (V) and uranium (U) in wild plants in Siwaqa Area, Central Jordan. Int J Curr Res Biosci Plant Biol 3(12):84–94CrossRefGoogle Scholar
  14. Clark I, Khoury H, Salameh E, Fritz P, Goksu Y, Wieser A, Causse C, Fontes J (1992a) Travertines in central Jordan IAEA—SM—319/6, 551–565Google Scholar
  15. Clark ID, Fontes JCh, Fritz P (1992b) Stable isotope disequilibria in travertine from high pH waters: laboratory investigations and field observations from Oman. Geochim Cosmochim Acta 56:2041–2050CrossRefGoogle Scholar
  16. Fleurance S, Cuney M, Malartre M, Reyx J (2012) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous-Early Tertiary Belqa Group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219CrossRefGoogle Scholar
  17. Flügel E (1982) Microfacies analysis of limestones. Springer, Berlin, p 633CrossRefGoogle Scholar
  18. Fournier RO (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu Rev Earth Planet Sci 17:13–53CrossRefGoogle Scholar
  19. Good JD, Pierce KL (1996) Interpreting the landscapes of Grand Teton and Yellowstone National Parks, recent and ongoing geology. Grand Teton National History Association, MooseGoogle Scholar
  20. Guo L, Riding R (1994) Origin and diagenesis of Quaternary travertine shrub fabrics, Rapolano Terme, central Italy. Sedimentology 41:499–520CrossRefGoogle Scholar
  21. Gur D, Steinitz G, Kolodny Y, Starinsky A, McWilliams M (1995) Ar40/Ar39 dating of combustion metamorphism. Chem Geol 122:171–184CrossRefGoogle Scholar
  22. Heimbach W, Rosch H (1980) Die Mottled Zone in central Jordanian. Geol Jb B 40:3–17Google Scholar
  23. Jaser D (1986) The geology of Khan Ez Zabib. Bull NRA, AmmanGoogle Scholar
  24. Khoury HN (2012) Long-term analogue of carbonation in Travertine from Uleimat Quarries, Central Jordan. Environ Earth Sci 65:1906–1916CrossRefGoogle Scholar
  25. Khoury HN (2014) Geochemistry of surficial uranium deposits from central Jordan. Jordan J Earth Environ Sci 6(3):11–22Google Scholar
  26. Khoury HN (2015) Uranium minerals of Central Jordan. Appl Earth Sci (Trans Inst Min Metall B) 124(2):104–128CrossRefGoogle Scholar
  27. Khoury HN, Nassir S (1982a) A discussion on the origin of Daba-Siwaqa marble. Dirasat, 9. University of Jordan, pp 55–56Google Scholar
  28. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Brock biology of microorganisms, 14th edn. Pearson, BostonGoogle Scholar
  29. Masri A (2002) Evidences on dextral movement and reactivation along Siwaqa fault/Central Jordan. In: Youssef EAA (ed) Geology of the Arab world, proceeding of the sixth international conference on the geology of the Arab world, Cairo University, vol 1, pp 327–334Google Scholar
  30. Nihlen T, Olsson S (1995) Influence of eolian dust on soil formation in the Aegean area. Zeitschrift für Geomorphologie 39:341–361Google Scholar
  31. Picard L (1931) Geological research in the Judean Desert. Goldbergs Press, JerusalemGoogle Scholar
  32. Raggad M (2009) GIS-based groundwater flow modeling and hydrogeochemical assessment of the northern part of the Dead Sea Groundwater Basin. Unpublished Ph.D. Thesis, University of JordanGoogle Scholar
  33. Salameh E, Bannayan H (1993) Water resources of Jordan; present status and future potentials. FES, RSCN, AmmanGoogle Scholar
  34. Salameh E, Udluft P (1985) The hydrodynamic pattern of the central part of Jordan. Geol Jb 38:39–53Google Scholar
  35. Sawarieh A (2005) Heat sources of the groundwater in the Zara-Zarqa Ma’in- Jiza Area, central Jordan. Ph.D. Thesis, University of Karlsruhe, GermanyGoogle Scholar
  36. Sawarieh A, Abualadas A, Bashish M, Al Sebai E (2000) Sinkholes phenomena at Ghour Al Haditha area, internal report No. 12 Natural Resources Authority, Amman, JordanGoogle Scholar
  37. Schreier C (1992) A field guide to Yellowstone’s Geysers, Hot Springs, and Fumaroles. Homestead Publishing, MooseGoogle Scholar
  38. Shinaq R, Bandel K (1998) Lithostratigraphy of the Belqa Group (Late Cretaceous) in northern Jordan. Universitat Hamburg, Mitteilungen aus dem Geologisch Palaeontologischen Institut 81:163–184Google Scholar
  39. Sokol E, Novikov I, Zateeva S, Vapnik Ye, Shagam R, Kozmenko O (2010) Combustion metamorphism in the Nabi Musa dome: new implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res 22:414–438CrossRefGoogle Scholar
  40. Vapnik Y, Sokol E (2006) Explosion breccias and diatremes as key structures in the formation of Hatrurim Formation. Abstract in Bet-Shean, Israel Geological Society, p 131Google Scholar
  41. Vapnik Ye, Sharygin VV, Sokol EV, Shagam R (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Geol Soc Am Rev Eng Geol 18:133–154CrossRefGoogle Scholar
  42. Walter MR, DesMarais DJ (1993) Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. Icarus 101:129–143CrossRefGoogle Scholar
  43. Weiser A, Göksu HY, Clark ID, Regulla DF, Fritz P, Vogenauer A (1992) ESR and TL dating of travertine from Jordan: complications in paleodose assessment. Appl Radiat Isot 44:149–152CrossRefGoogle Scholar
  44. Yellowstone Geysers, Yellowstone National Park com 2014Google Scholar
  45. Zhang Z, Ramstein G, Schuster M, Li C, Contoux C, Yan Q (2014) Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 2014(513):401–404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ikhlas Alhejoj
    • 1
  • Klaus Bandel
    • 2
  • Elias Salameh
    • 1
  • Khitam Alzughoul
    • 1
  1. 1.Department of GeologyThe University of JordanAmmanJordan
  2. 2.Geologisch-Paläontologisches Institut und Museum HamburgUniversität HamburgHamburgGermany

Personalised recommendations