Skip to main content
Log in

An evaluation index for the fracturing effect in shale based on laboratory testing

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

It is clear that evaluating the fracturing effect with laboratory tests can shed some light on designing fracturing programs for shale gas exploitation. To evaluate the fracturing effect quantitatively, a series of uniaxial cyclic loading tests on shale were conducted. Based on the experimental results, a damage variable derived from the total axial strains of the loading–unloading cycles was established and introduced into a damage evolution equation to analyze damage evolution in the shale. In the end, a new index for evaluating the fracturing effect, \(C_{AN} '\), was proposed. The results show that \(C_{AN} '\) has a positive correlation with fracture complexity and can be regarded as an effective index to evaluate fracture networks in shale using laboratory tests. In addition, this study demonstrates that the fracturing effect is also related to the angle between the direction in which the load is applied and the shale’s bedding plane. This can provide a useful reference for shale gas exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almi S, Maso GD, Toader R (2014) Quasi-static crack growth in hydraulic fracture. Nonlinear Anal 109(12):301–318

    Article  Google Scholar 

  • Chen L, Shao JF, Huang HW (2010) Coupled elastoplastic damage modeling of anisotropic rocks. Comput Geotech 37(1–2):187–194

    Article  Google Scholar 

  • Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearson JRA, Thiercelin M, Cheng A (1994) The crack tip region in hydraulic fracturing. Proc R Soc Lond A 447(1929):39–48

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B (1999) Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int J Rock Mech Min Sci 36(3):361–380

    Article  Google Scholar 

  • Fisher MK, Wright CA, Davidson BM, Goodwin AK, Fielder EO, Buckler WS, Steinsberger NP (2005) Integrating fracture-mapping technologies to improve stimulations in the Barnett shale. In: Proceedings of the SPE/annual technical conference and exhibition, San Antonio, Texas, USA

  • Guo TK, Zhang SC, Ge HK, Wang XQ, Lei X, Xiao B (2015) A new method for evaluation of fracture network formation capacity of rock. Fuel 140:778–787

    Article  Google Scholar 

  • Hou B, Chen M, Li ZM, Wang YH, Diao C (2014) Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs. Pet Explor Dev 41(6):833–838

    Article  Google Scholar 

  • Johri M, Zoback MD (2013) The evolution of stimulated reservoir volume during hydraulic stimulation of shale gas formations. In: Proceedings of the unconventional resources technology conference, Denver, Colorado, USA

  • Josh M, Esteban L, Delle Piane C, Sarout J, Dewhurst DN, Clennell MB (2012) Laboratory characterisation of shale properties. J Pet Sci Eng 88–89(2):107–124

    Article  Google Scholar 

  • Liang C, Jiang ZX, Zhang CM, Guo L, Yang YT, Li J (2014) The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale, Sichuan Basin, South China. J Nat Gas Sci Eng 21:636–648

    Article  Google Scholar 

  • Liu JX, Yang CH, Mao HJ, Chen XL, Liu YT (2015) Study on crack spreading and evolvement of clay shale based on CT image processing. J Zhejing Univ Technol 43(1):66–72 (in Chinese with English abstract)

    Google Scholar 

  • Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci 31(6):643–659

    Article  Google Scholar 

  • Meng Q, Zhang M, Han L, Pu H, Nie T (2016) Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression. Rock Mech Rock Eng 49(10):3873–3886

    Article  Google Scholar 

  • Nolen-Hoeksema RC, Gordon RB (1987) Optical detection of crack patterns in the opening-mode fracture of marble. Int J Rock Mech Min Sci 24(2):135–144

    Article  Google Scholar 

  • Peng RD, Ju Y, Gao F, Xie HP, Wang P (2014) Energy analysis on damage of coal under cyclical triaxial loading and unloading conditions. J China Coal Soc 39(2):245–252

    Google Scholar 

  • Riahi A, Damjanac B (2013) Numerical study of interaction between hydraulic fracture and discrete fracture network. In: Proceedings of the ISRM/international conference for effective and sustainable hydraulic fracturing, Brisbane, Australia

  • Roshan H, Sarmadivaleh M, Iglauer S (2016) Shale fracture surface area measured by tracking exchangeable cations. J Pet Sci Eng 138:97–103

    Article  Google Scholar 

  • Sone H, Zoback MD (2013) Mechanical properties of shale-gas reservoir rocks—Part 1: static and dynamic elastic properties and anisotropy. Geophysics 78(5):D381–D392

    Article  Google Scholar 

  • Su K, Ghoreychi M, Chanchole S (2000) Experimental study of damage in granite. Geotechnique 50(3):235–241

    Article  Google Scholar 

  • Suarez-Rivera R, Burghardt J, Stanchits S, Edelman E, Surdi A (2013) Understanding the effect of rock fabric on fracture complexity for improving completion design and well performance. In: Proceedings of the international petroleum technology conference, Beijing, China

  • Wang Y (2014) Research on the mechanical behavior of rock and soil aggregates based on meso-structural mechanics. Ph.D. Thesis, Beijing: University of Chinese Academy of Sciences (in Chinese with English abstract)

  • Wang MM (2016) The mechanical and acoustic characteristics in the progressive failure process of Longmaxi formation bedded shale. Ph.D. Thesis, Beijing: University of Chinese Academy of Sciences (in Chinese with English abstract)

  • Wang YX, Cao P, Yin TB (2011) Simulation research for impact damage fracture evolution of brittle rock plate under impact loading. J Sichuan Univ (Eng Sci Ed) 43(6):85–90 (in Chinese with English abstract)

    Google Scholar 

  • Wang CY, Yang CH, Heng S, Mao HJ (2015) CT test for evolution of mudstone fractures under compressive load. Rock Soil Mech 36(6):1591–1597 (in Chinese with English abstract)

    Google Scholar 

  • Wei YL, Yang CH, Guo YT, Liu W, Wang L, Heng S (2015) Experimental investigation on deformation and fracture characteristics of brittle shale with natural cracks under uniaxial cyclic loading. Rock Soil Mech 36(6):1649–1658 (in Chinese with English abstract)

    Google Scholar 

  • Wu YS, Li X, He JM, Zheng B (2016) Mechanical properties of Longmaxi black organic-rich shale samples from south China under uniaxial and triaxial compression states. Energies 9(12):1088

    Article  Google Scholar 

  • Xie HP (1990) Rock and concrete damage mechanics. Jiangsu, China (in Chinese)

  • Xie HP, Ju Y, Li LY, Peng RD (2008) Energy mechanism of deformation and failure of rock masses. Chin J Rock Mech Eng 27(9):1729–1740 (in Chinese with English abstract)

    Google Scholar 

  • Xu WY, Thiercelin MJ, Walton IC (2009) Characterization of hydraulically-induced shale fracture network using an analytical/semi-analytical model. In: Proceedings of the SPE/annual technical conference and exhibition, New Orleans, Louisiana, USA

  • Xu D, Hu RL, Gao W, Xia JG (2015) Effects of laminated structure on hydraulic fracture propagation in shale. Pet Explor Dev 42(4):573–579

    Article  Google Scholar 

  • Xue L, Qin SQ, Sun Q, Wang YY, Lee ML, Li WC (2014) A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech Rock Eng 47(4):1183–1195

    Article  Google Scholar 

  • Yan CL, Deng JG, Cheng YF, Li ML, Feng YC, Li XR (2017) Mechanical properties of gas shale during drilling operations. Rock Mech Rock Eng 50(7):1753–1765

    Article  Google Scholar 

  • Yang SQ, Ranjith PG, Huang YH, Yin PF, Jing HW, Gui YL, Yu QL (2015a) Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading. Geophys J Int 201(2):662–682

    Article  Google Scholar 

  • Yang TY, Li X, Zhang DX (2015b) Quantitative dynamic analysis of gas desorption contribution to production in shale gas reservoirs. J Unconv Oil Gas Res 9:18–30

    Article  Google Scholar 

  • Zhang ZB, Li X, Yuan WN, He JM, Li GF, Wu YS (2015) Numerical analysis on the optimization of hydraulic fracture networks. Energies 8(10):12061–12079

    Article  Google Scholar 

  • Zhou H, Zhang K, Feng XT (2011) Experimental study on progressive yielding of marble. Mater Res Innov 15(sup1):s143–s146

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB10030302). The authors would like to express special thanks to anonymous reviewers and the editor for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Xue, L. & Wang, M. An evaluation index for the fracturing effect in shale based on laboratory testing. Environ Earth Sci 77, 240 (2018). https://doi.org/10.1007/s12665-018-7412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7412-8

Keywords

Navigation