Abrupt monsoonal shifts over the precessional cycles documented in Yongxing Cave in China during the antepenultimate glacial period

  • Yijia Liang
  • Shitao Chen
  • Zhenqiu Zhang
  • Shaohua Yang
  • Mingxia Li
  • Hai Cheng
  • Yongjin Wang
Original Article


Precession is the major orbital control of monsoon intensity, but the monsoonal response to the transition between precessional cycles has yet to be explored. Here, we present an Asian Summer Monsoon history that spans 327.7–280.5 ka BP based on a 230Th-dated and centennially resolved multi-proxy speleothem record from Yongxing Cave, central China. The δ18O profile, a proxy of monsoon intensity, follows the summer insolation changes, with three abrupt shifts occurring at precessional transitions. These shifts are supported by the stalagmite δ13C, grey-level and petrography analysis, indicating a coherent link between the karst processes and monsoon changes. Evidence from the coeval rapid changes in atmospheric CH4 and forest evolution records within dating errors suggests a wider regional signal of monsoon changes. The weak monsoon intervals are temporally consistent with the ice-rafted debris layers in the North Atlantic, indicating a strong coupling of the high- and low-latitude climate systems. We speculate that the abrupt monsoonal shifts are initiated by the south–north shifts of the Intertropical Convergence Zone associated with the Atlantic Meridional Overturning Circulation and further amplified by land cover. In addition, the rates and magnitudes of insolation changes modify monsoon shifts, thus indicating the abrupt monsoonal shift as a result of an interaction of orbital and millennial forcing.


Chinese stalagmite Asian Monsoon Abrupt shifts Precession cycle Interaction 



The authors are grateful to the Editor-in-Chief Dr. Dörhöfer and the two anonymous reviewers for their constructive comments which significantly improved the manuscript. This work was supported by grants of National Nature Science Foundation of China (41130210, 41072126 and 41572340), Priority Academic Program Development of Jiangsu Higher Education Institutions, National Key Basic Research Program of China (2015CB953804) and US Nature Science Foundation (1103403).


  1. Barker S, Knorr G, Edwards RL, Parrenin F, Putnam AE, Skinner LC, Wolff E, Ziegler M (2011) 800,000 years of abrupt climate variability. Science 334:347–351CrossRefGoogle Scholar
  2. Bar-Matthews M, Ayalon A, Kaufman A (1997) Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quat Res 47:155–168CrossRefGoogle Scholar
  3. Berger AL (1978) Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quat Res 9:139–167CrossRefGoogle Scholar
  4. Caley T, Roche DM, Renssen H (2014) Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model. Nat Commun 5:5371. CrossRefGoogle Scholar
  5. Channell JET, Hodell DA, Romero O, Hillaire-Marcel C, de Vernal A, Stoner JS, Mazaud A, Röhl U (2012) A 750-kyr detrital-layer stratigraphy for the North Atlantic (IODP Sites U1302–U1303, Orphan Knoll, Labrador Sea). Earth Planet Sci Lett 317–318:218–230CrossRefGoogle Scholar
  6. Chappellaz J, Blunier T, Raynaud D, Barnola JM, Schwander J, Stauffer B (1993) Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366:443–445CrossRefGoogle Scholar
  7. Cheng H, Edwards RL, Broecker WS, Denton GH, Kong XG, Wang YJ, Zhang R, Wang XF (2009) Ice age terminations. Science 326:248–252CrossRefGoogle Scholar
  8. Cheng H, Edwards RL, Shen CC, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang YJ, Kong XG, Spötl C, Wang XF, Calvin Alexander E Jr (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371–372:82–91CrossRefGoogle Scholar
  9. Cheng H, Edwards RL, Sinha A, Spötl C, Yi L, Chen ST, Kelly M, Kathayat G, Wang XF, Li XL, Kong XG, Wang YJ, Ning YF, Zhang HW (2016) The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534:640–646CrossRefGoogle Scholar
  10. Chiang JCH, Lee SY, Putnam AE, Wang XF (2014) South Pacific Split Jet, ITCZ shifts, and atmospheric North-South linkages during abrupt climate changes of the last glacial period. Earth Planet Sci Lett 406:233–246CrossRefGoogle Scholar
  11. Clemens SC, Prell WL, Sun YB (2010) Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O. Paleoceanography 25:PA4207. CrossRefGoogle Scholar
  12. Cobb KM, Adkins JF, Partin JW, Clark B (2007) Regional-scale climate influences on temporal variations of rainwater and cave dripwater oxygen isotopes in northern Borneo. Earth Planet Sci Lett 263:207–220CrossRefGoogle Scholar
  13. Dayem KE, Molnar P, Battisti DS, Roe GH (2010) Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth Planet Sci Lett 295:219–230CrossRefGoogle Scholar
  14. deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361CrossRefGoogle Scholar
  15. Denniston RF, Asmerom Y, Lachniet M, Polyak VJ, Hope P, An N, Rodzinyak K, Humphreys WF (2013) A Last Glacial Maximum through middle Holocene stalagmite record of coastal Western Australia climate. Quat Sci Rev 77:101–112CrossRefGoogle Scholar
  16. Dorale JA, Liu ZH (2009) Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. J Cave Karst Stud 71:73–80Google Scholar
  17. Dorale JA, Edwards RL, Ito E, González LA (1998) Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA. Science 282:1871–1874CrossRefGoogle Scholar
  18. Douville H, Chauvin F, Broqua H (2001) Influence of soil moisture on the Asian and African monsoons. Part I: mean monsoon and daily precipitation. J Clim 14:2381–2403CrossRefGoogle Scholar
  19. Dreyfus GB, Parrenin F, Lemieux-Dudon B, Durand G, Masson-Delmotte V, Jouzel J, Barnola JM, Panno L, Spahni R, Tisserand A, Siegenthaler U, Leuenberger M (2007) Anomalous flow below 2700 m in the EPICA Dome C ice core detected using δ18O of atmospheric oxygen measurements. Clim Past 3:341–353CrossRefGoogle Scholar
  20. Duan FC, Wu JY, Wang YJ, Edwards RL, Cheng H, Kong XG, Zhang WH (2015) A 3000-yr annually laminated stalagmite record of the Last Glacial Maximum from Hulu Cave, China. Quat Res 83:360–369CrossRefGoogle Scholar
  21. Duan WH, Ruan JY, Luo WJ, Li TY, Tian LJ, Zeng GN, Zhang DZ, Naid YJ, Li JL, Tao T, Zhang PZ, Baker A, Tan M (2016) The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China. Geochim Cosmochim Acta 183:250–266CrossRefGoogle Scholar
  22. Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F (2006) Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75:105–153CrossRefGoogle Scholar
  23. Fletcher WJ, Müller UC, Koutsodendris A, Christanis K, Pross J (2013) A centennial-scale record of vegetation and climate variability from 312 to 240 ka (Marine Isotope Stages 9c-a, 8 and 7e) from Tenaha Philippon, NE Greece. Quat Sci Rev 78:108–125CrossRefGoogle Scholar
  24. Genty D, Baker A, Massault M, Proctor C, Gilmour M, Pons-Branchu E, Hamelin B (2001) Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochim Cosmochim Acta 65:3443–3457CrossRefGoogle Scholar
  25. Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S (2003) Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421:833–837CrossRefGoogle Scholar
  26. Grünzweig JM, Hemming D, Maseyk K, Lin TB, Rotenberg E, Raz-Yaseef N, Falloon PD, Yakir D (2009) Water limitation to soil CO2 efflux in a pine forest at the semiarid “timberline”. J Geophys Res 114:G03008. CrossRefGoogle Scholar
  27. Hendy CH (1971) The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochim Cosmochim Acta 3:801–824CrossRefGoogle Scholar
  28. Hercman H, Pawlak J (2012) MOD-AGE: an age-depth model construction algorithm. Quat Geochronol 12:1–10CrossRefGoogle Scholar
  29. Jo KN, Woo KS, Lim HS, Cheng H, Edwards RL, Wang YJ, Jiang XY, Kim R, Lee JI, Yoon HI, Yoo KC (2011) Holocene and Eemian climatic optima in the Korean Peninsula based on textural and carbon isotopic records from the stalagmite of the Daeya Cave, South Korea. Quat Sci Rev 30:1218–1231CrossRefGoogle Scholar
  30. Kelly MJ, Edwards RL, Cheng H, Yuan DX, Cai YJ, Zhang ML, Lin YS, An ZS (2006) High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years BP from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeogr Palaeoclimatol Palaeoecol 236:20–38CrossRefGoogle Scholar
  31. Kong XG, Wang YJ, Wu JY, Cheng H, Edwards RL, Wang XF (2005) Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China. Sci China Ser D Earth Sci 48:2174–2181CrossRefGoogle Scholar
  32. Kutzbach JE (1981) Monsoon climate of the early Holocene: climate experiment with the earth’s orbital parameters for 9,000 years ago. Science 214:59–61CrossRefGoogle Scholar
  33. Lambert WJ, Aharon P (2011) Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: implications for speleothem δ13C assessments. Geochim Cosmochim Acta 75:753–768CrossRefGoogle Scholar
  34. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22CrossRefGoogle Scholar
  35. Levermann A, Schewe J, Petoukhov V, Held H (2009) Basic mechanism for abrupt monsoon transitions. Proc Natl Acad Sci USA 106:20572–20577CrossRefGoogle Scholar
  36. Lewis SC, Legrande AN, Kelly M, Schmidt GA (2010) Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events. Clim Past 6:325–343CrossRefGoogle Scholar
  37. Li TY, Shen CC, Li HC, Li JY, Chiang HW, Song SR, Yuan DX, Lin CDJ, Gao P, Zhou LP, Wang JL, Ye MY, Tang LL, Xie SY (2011) Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China. Geochim Cosmochim Acta 75:4140–4156CrossRefGoogle Scholar
  38. Li J, Zheng Z, Huang KY, Yang SX, Chase B, Valsecchi V, Carré M, Cheddadi R (2013) Vegetation changes during the past 40,000 years in Central China from a long fossil record. Quat Int 310:221–226CrossRefGoogle Scholar
  39. Liu DB, Wang YJ, Cheng H, Edwards RL, Kong XG, Wang XF, Hardt B, Wu JY, Chen ST, Jiang XY, He YQ, Dong JG, Zhao K (2010) Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations. Quat Sci Rev 29:1107–1115CrossRefGoogle Scholar
  40. Liu ZY, Wen XY, Brady EC, Otto-Bliesner B, Yu G, Lu HY, Cheng H, Wang YJ, Zheng WP, Ding YH, Edwards RL, Cheng J, Liu W, Yang H (2014) Chinese cave records and the East Asia Summer Monsoon. Quat Sci Rev 83:115–128CrossRefGoogle Scholar
  41. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola JM, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386CrossRefGoogle Scholar
  42. Maher BA, Thompson R (2012) Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime. J Quat Sci 27:615–624CrossRefGoogle Scholar
  43. McManus JF, Oppo DW, Cullen JL (1999) A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283:971–975CrossRefGoogle Scholar
  44. Mickler PJ, Stern LA, Banner JL (2006) Large kinetic isotope effects in modern speleothems. Geol Soc Am Bull 118:65–81CrossRefGoogle Scholar
  45. Miller G, Mangan J, Pollard D, Thompson S, Felzer B, Magee J (2005) Sensitivity of the Australian monsoon to insolation and vegetation: implications for human impact on continental moisture balance. Geology 33:65–68CrossRefGoogle Scholar
  46. Mohtadi M, Prange M, Steinke S (2016) Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533:191–199CrossRefGoogle Scholar
  47. Parrenin F, Barnola JM, Beer J, Blunier T, Castellano E, Chappellaz J, Dreyfus G, Fischer H, Fujita S, Jouzel J, Kawamura K, Lemieux-Dudon B, Loulergue L, Masson-Delmotte V, Narcisi B, Petit JR, Raisbeck G, Raynaud D, Ruth U, Schwander J, Severi M, Spahni R, Steffensen JP, Svensson A, Udisti R, Waelbroeck C, Wolff E (2007) The EDC3 chronology for the EPICA Dome C ice core. Clim Past 3:485–497CrossRefGoogle Scholar
  48. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, PÉpin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  49. Plestenjak G, Eler K, Vodnik D, Ferlan M, Čater M, Kanduč T, Simončič P, Ogrinc N (2012) Sources of soil CO2 in calcareous grassland with woody plant encroachment. J Soil Sediment 12:1327–1338CrossRefGoogle Scholar
  50. Schaefer JM, Putnam AE, Denton GH, Kaplan MR, Birkel S, Doughty AM, Kelley S, Barrell DJA, Finkel RC, Winckler G, Anderson RF, Ninneman US, Barker S, Schwartz R, Andersen BG, Schluechter C (2015) The southern glacial maximum 65,000 years ago and its unfinished termination. Quat Sci Rev 114:52–60CrossRefGoogle Scholar
  51. Shackleton NJ (2000) The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289:1897–1902CrossRefGoogle Scholar
  52. Siddall M, Rohling EJ, Blunier T, Spahni R (2010) Patterns of millennial variability over the last 500 ka. Clim Past 6:295–303CrossRefGoogle Scholar
  53. Singarayer JS, Valdes PJ, Friedlingstein P, Nelson S, Beerling DJ (2011) Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470:82–85CrossRefGoogle Scholar
  54. Taylor WA (2000) Change-point analysis: a powerful new tool for detecting changes. Taylor Enterprises, Inc. Accessed 8 Sep 2017
  55. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen CC, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348CrossRefGoogle Scholar
  56. Wang YJ, Cheng H, Edwards RL, Kong XG, Shao XH, Chen ST, Wu JY, Jiang XY, Wang XF, An ZS (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093CrossRefGoogle Scholar
  57. Wei JF, Su H, Yang ZL (2016) Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Clim Dyn 46:467–481CrossRefGoogle Scholar
  58. Wolff EW, Fischer H, Röthlisberger R (2009) Glacial terminations as southern warmings without northern control. Nat Geosci 2:206–209CrossRefGoogle Scholar
  59. Yadava MG, Ramesh R, Pant GB (2004) Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothem. Holocene 14:517–524CrossRefGoogle Scholar
  60. Yuan DX, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang ML, Qing JM, Lin YS, Wang YJ, Wu JY, Dorale JA, An ZS, Cai YJ (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578CrossRefGoogle Scholar
  61. Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A, Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:117–161CrossRefGoogle Scholar
  62. Ziegler M, Tuenter E, Lourens LJ (2010) The precession phase of the boreal summer monsoon as viewed from the Eastern Mediterranean (ODP site 968). Quat Sci Rev 29:1481–1490CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yijia Liang
    • 1
    • 2
    • 3
  • Shitao Chen
    • 1
    • 2
    • 3
  • Zhenqiu Zhang
    • 4
  • Shaohua Yang
    • 1
    • 2
    • 3
  • Mingxia Li
    • 1
    • 2
    • 3
  • Hai Cheng
    • 5
  • Yongjin Wang
    • 1
    • 2
    • 3
  1. 1.College of Geography ScienceNanjing Normal UniversityNanjingChina
  2. 2.State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province)NanjingChina
  3. 3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and ApplicationNanjingChina
  4. 4.School of History Geography and TourismShangrao Normal UniversityShangraoChina
  5. 5.Institute of Global Environmental ChangeXi’an Jiaotong UniversityXi’anChina

Personalised recommendations