Incrustation ability of geothermal waters of the Continental Intercalaire aquifer in the Grand Erg Oriental basin (Algeria and South Tunisia)

  • Radhia Essamin
  • Samir Kamel
Original Article


The chemical composition of groundwater from wells tapping the Continental Intercalaire (CI) aquifer in the Grand Erg Oriental basin and the detailed analysis of saturation indices enable identification of the mineralization origin. CI groundwater is characterized by a Ca–SO4/Cl abundant water type and a Na–Cl second type. Chemical pattern is controlled by evaporites dissolution (halite, anhydrite and gypsum). Recently, the decrease in these CI geothermal water wells performance is explained by an incrustation in the well screen. To study the scaling process, we used the degree of calcite saturation, hardness and Langelier Saturation Index (LSI). It has been demonstrated that scaling potential is the most important in the basin axis, around El Oued region (southern Algeria) and in the south-east of Tunisia and the Chott Djerid borders (El Hamma of Gabes, Tozeur and Kebili) corresponding to the discharge zones. However, the scaling potential decreases towards Algerian reliefs (Tademait and Tinrhert) representing aquifer recharge zones.


Grand Erg Oriental basin Continental Intercalaire Calcite saturation Hardness LSI Scaling potential 



The authors wish to thank the anonymous reviewers for their constructive comments that improved the paper. We thank Jennifer and Charlie BLACK and Jemaa ESSEMINE for proofreading the manuscript.


  1. Agoun A (2010) Hydrogeological characteristics of the geothermal transboundary aquifer reservoir case study of the Continental Intercalaire aquifer system in North Sahara Aquifer System (NSAS) in southern Tunisian field. In: Proceedings world geothermal congress, Bali, pp 25–29Google Scholar
  2. Baghvand A, Nasrabadi T, Bidhendi GN, Vosoogh A, Karbassi A, Mehrdadi N (2010) Groundwater quality degradation of an aquifer in Iran central desert. Desalination 260:264–275. CrossRefGoogle Scholar
  3. Busson G (1970) Le Mésozoïque saharien, 2eme partie: essai de synthèse des données des sondages algéro-tunisiens. Publications du Centre de Recherches sur la Zone Aride, Série Géologie, vol 11a–b. CNRS, Paris, pp 1–812.
  4. Chadha DKA (1999) Proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7:431–439. CrossRefGoogle Scholar
  5. Clark PD, Hyne JB, Tyrer JD (1983) Chemistry of organosulphur compound types occurring in heavy oil sands: 1. High temperature hydrolysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes. Fuel 62:959–962. CrossRefGoogle Scholar
  6. Edmunds WM, Guendouz A, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822CrossRefGoogle Scholar
  7. Garcia GM, Hidalgo MDV, Blesa MA (2001) Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeol J 9:597–610. CrossRefGoogle Scholar
  8. Gemici U, Filiz S (2001) Hydrogeochemistry of the gesme geothermal field, western Turkey. J Volcanol Geotherm Res 110:171–187CrossRefGoogle Scholar
  9. Gueddari M, Besbes M, Mammou A, Bouhlila R (2005) Recharge et paléorecharge du Système Aquifère du Sahara
  10. Houari IM (2012) Contribution to the study of the geochemical evolution of water from the table of complex terminal of the northern Sahara. Dissertation, University Kasdi Merbah, AlgeriaGoogle Scholar
  11. Houben G (2003) Iron oxide incrustations in wells, parts: genesis, mineralogy and geochemistry. Appl Geochem 18:927–939CrossRefGoogle Scholar
  12. Kamel S (2011) Application of selected geothermometers to Continental Intercalaire thermal water in southern Tunisia. Geothermics 41:63–73. CrossRefGoogle Scholar
  13. Larroque F, Franceschi M (2011) Impact of chemical clogging on de-watering well productivity: numerical assessment. J Environ Earth Sci 64:119–131. CrossRefGoogle Scholar
  14. McLean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo O et al (eds) Groundwater, past achievements and future challenges. A Balkema, Rotterdam, pp 567–573
  15. Nordstorm DK (1977) Thermochemical redox equilibrium of ZoBell’s solution. Geochim Cosmochim Acta 41:1835–1841. CrossRefGoogle Scholar
  16. OSS (2003). Système Aquifère du Sahara Septentrional.Volume 2: Hydrogéologie, Projet SASS, Rapport interne, Direction Génerale des Ressources en Eau, Tunis, p 275.
  17. Plummer LN, Jones BF, Truesdell AH (1976) WATEQF—A Fortran IV of WATEQ, a computer program for calculating chemical equilibrium of natural water. U.S Geological Survey, Washington.
  18. Rafferty K (1999) Scaling in geothermal heat pump systems. Prepared for: U.S. Department of Energy, Idaho Operations Office and 785 DOE Place, Idaho Falls, ID 83401.
  19. Saharawat YS, Malik RS, Jhorar BS, Streck T, Chaudhary N, Jat ML (2009) Changes in the recoverable fractions during successive cycles of aquifer storage and recovery system in North-West India. Curr Sci 97:1369–1374Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.High Institute of Water Sciences and Technology of GabesGabèsTunisia

Personalised recommendations