Abstract
This study uses the InSAR technique to analyse ground subsidence due to intensive exploitation of an aquifer for agricultural and urban purposes in the Montellano town (SW Spain). The detailed deformation maps clearly show that the spatial and temporal extent of subsidence is controlled by piezometric level fluctuations and the thickness of compressible sediments. The total vertical displacement measured with multi-temporal InSAR, between 1992 and 2010, is 33 mm that corresponds with a decrease of 43 m in the groundwater level. This technique allows monitoring the evolution of settlement related to water level fall in an area where subsidence has not yet been reported by population or authorities through infrastructure damages and to discuss the effect of the aquifer recovery. This information is, therefore, valuable for implementing effective groundwater management schemes and land-use planning and to propose new building regulations in the most affected areas.
This is a preview of subscription content,
to check access.











Similar content being viewed by others
References
Amelung F, Galloway DL, Bell JW, Zebker H, Laczniak RJ (1999) Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483–486
Aobpaet A, Caro Cuenca M, Hooper A, Trisirisatayawong I (2013) InSAR time-series analysis of land subsidence in Bangkok, Thailand. Int J Remote Sens 34(8):2969–2982
Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Probl 14:R1–R54. doi:10.1088/0266-5611/14/4/001
Bekaert DPS, Hooper A, Wright TJ (2015) A spatially-variable power-law tropospheric correction technique for InSAR data. J Geophys Res Sol Ea. doi:10.1002/2014JB011558
Bell JW, Amelung F, Ferretti A, Bianchi M, Novali F (2008) Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour Res 44:W02407. doi:10.1029/2007WR006152
Bürgmann R, Rose PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209
Casagrande A (1936) The determination of pre-consolidation load and its practical significance. Proceedings of the first international conference on soil mechanics and foundation engineering, vol 3. Cambridge, England, pp 60–64
Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 54(2):143–147
Chaussard E, Wdowinski S, Cabral E, Amelung F (2014) Land Subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens Environ 104:94–106. doi:10.1016/j.rse.2013.08.038
Davila-Hernandez N, Madrigal D, Expósito JL, Antonio X (2014) Multi-temporal analysis of land subsidence in Toluca valley (Mexico) through a combination of persistent interferometry (PSI) and historical piezometric data. Adv Remote Sens 3:49–60. doi:10.4236/ars.2014.32005
Durán-Valsero JJ, López-Geta JA, Martín-Machuca M, Maestre Acosta A, Pérez Martín P, Mora Fernández P (2003) Atlas hidrogeológico de la provincia de Sevilla. IGME-Diputación Provincial de Sevilla, p 208
Fernández P, Irigaray C, Jiménez J, Hamdouni R, Crosetto M, Monserrat O, Chacón J (2009) First delimitation of areas affected by ground deformations in the Guadalfeo river valley and Granada metropolitan area (Spain) using the DInSAR technique. Eng Geol 105:84–101
Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470
Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94:9183–9191
Galloway DL, Hoffmann J (2007) The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeol J 15(1):133–154. doi:10.1007/s10040-006-0121-5
Galloway DL, Hudnut KW, Ingebritsen SE, Philips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope valley, Mojave desert, California. Water Resour Res 34(10):2573–2585
Gregory AS, Whaley WR, Watts CW, Bird NRA, Hallet PD, Whitmore AP (2006) Calculation of the compression index and precompression stress from soil compression test data. Soil Tillage Res 89:45–57
Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publishers, Dordrecht 328 pp
Helm DC (1984) Field-based computational techniques for predicting subsidence due to fluid withdrawal. In: Holzer TL (ed) Man-induced land subsidence: reviews in engineering geology 6: 1–22
Hooper AJ (2006) Persistent scatterer radar interferometry for crustal deformation studies and modelling of volcanic deformation. Ph.D. thesis, Stanford University
Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302. doi:10.1029/2008GL034654
Hooper A (2010) A statistical-cost approach to unwrapping the phase of InSAR time series. European Space Agency ESA SP-677 (Special publication)
Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. doi:10.1029/2004GL021737
Hooper A, Segall P, Zebker H (2007) Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res 112:B07407. doi:10.1029/2006JB004763
Hooper A, Bekaert DPS, Spaans K, Arikan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13. doi:10.1016/j.tecto.2011.10.013
Hooper A, Bekaerti D, Spaans K (2013) StaMPS/MTI manual. Version 3.3b1. School of Earth and Environment, University of Leeds, UK
Hu RL, Yue ZQ, Wang LC, Wang SJ (2004) Review on current status and challenging issues of land subsidence in China. Eng Geol 76:65–77
IGME (1988) Memoria y mapa geológico de España, escala 1:50.000. Hoja de Montellano (1035)
Jamiolkowski M, Ladd CC, Germaine J, Lancellotta R (1985) New developments in field and lab testing of soils. Proceedings 11th international conference on soil mechanics and foundations engineering, vol 1. San Francisco, pp 57–154
Jiang L, Lin H, Cheng S (2011) Monitoring and assessing reclamation settlement in coastal areas with advanced InSAR techniques: Macao city (China) case study. Int J Remote Sens 32:3565–3588. doi:10.1080/01431161003752448
Kirker AI, Platt JP (1998) Unidirectional slip vectors in the western Betic Cordillera: implications for the formation of the Gibraltar arc. J Geol Soc 155:193–207. doi:10.1144/gsjgs.155.1.0193
Leake SA (1990) Interbed storage changes and compaction in models of regional groundwater flow. Water Resour Res 26(9):1939–1950
Martín-Algarra A, Vera JA (2004) La Cordillera Bética y las Baleares en el contexto del Mediterráneo occidental. In: Vera JA (ed) Geología de España. Soc Geol de Esp, Madrid, pp 352–354
Massonnet E, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36:441–500
Mitchel JK (1998) Introduction: hazards in changing cities. Appl Geogr 18(1):1–6
Ortiz-Zamora D, Ortega-Guerrero A (2010) Evolution of long-term land subsidence near Mexico City: review, field investigations, and predictive simulations. Water Resour Res 46(1):W01513. doi:10.1029/2008WR007398
Osmanoglu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with persistent scatterer InSAR. Int J Appl Earth Obs Geoinform 13(1):1–12. doi:10.1016/j.jag.2010.05.009
Pedrera A, Marín-Lechado C, Martos-Rosillo S, Roldán FJ (2012) Curved fold-and thrust accretion during the extrusion of a synorogenic viscous allochthonous sheet: The Estepa Range (External Zones, Western Betic Cordillera, Spain). Tectonics 31: TC4024. doi:10.1029/2012TC003130
Perissin D, Wang T (2011) Time-series InSAR applications over urban areas in China. IEEE J Sel Top Appl Earth Obs Remote Sens 4(1):92–100. doi:10.1109/JSTARS.2010.2046883
Poland JF (1961) The coefficient of storage in a region of major subsidence caused by compaction of an aquifer system. US geological survey professional paper 424-B: 52–54
Rodríguez Ortiz JM, Mulas J (2002) Subsidencia generalizada en la ciudad de Murcia (España). In: Carcedo JA, Cantos JO (eds) Riesgos Naturales. Editorial Ariel, Barcelona, pp 459–463
Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodrígues E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88:333–385
Scharroo R, Visser P (1998) Precise orbit determination and gravity field improvement for the ERS satellites. J Geophys Res 103:8113–8127. doi:10.1029/97JC03179
Shi LX, Bao MF (1984) Case history no. 9.2—Shanghai, China. In Poland JF (ed) Guidebook to studies of land subsidence due to groundwater withdrawal, UNESCO, Paris. http://wwwrcamnl.wr.usgs.gov/rgws/Unesco/PDF-Chapters/Chapter9-2.pdf. Accessed 21 Dec 2015
Sousa J, Hanssen R, Bastos L, Ruiz A, Perski Z, Gil A (2007) Ground subsidence in the Granada City and surrounding area (Spain) using DInSAR monitoring. In: AGU Meeting 2007. S. Francisco, USA, 10–14 Dec 2007
Sousa J, Ruiz A, Hanssen R, Bastos L, Gil A, Galindo-Zaldívar J, Sanz de Galdeano C (2010) PS-InSAR processing methodologies in the detection of field surface deformation—study of the Granada Basin (Central Betic Cordilleras, Southern Spain). J Geodyn 49:181–189. doi:10.1016/j.jog.2009.12.002
Sousa J, Hooper A, Hanssen R, Bastos L, Ruiz A (2011) Persistent scatterer InSAR: a comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens Environ 115(10):2652–2663
Sridharan A, Abraham BM, Jose BT (1991) Improved method for estimation of preconsolidation pressure. Geotechnique 41(2):263–268
Tomás R, Márquez Y, Lopez-Sanchez JM, Delgado J, Blanco P, Mallorqui JJ, Martinez M, Herrera G, Mulas J (2005) Mapping ground subsidence induced by aquifer overexploitation using advanced differential SAR interferometry: Vega Media of the Segura River (SE Spain) case study. Remote Sens Environ 98:269–283. doi:10.1016/j.enggeo.2010.06.004
Tomás R, Herrera G, Lopez-Sanchez JM, Vicente F, Cuenca A, Mallorqui JJ (2010) Study of the land subsidence in Orihuela City (SE Spain) using PSI data: distribution, evolution and correlation with conditioning and triggering factors. Eng Geol 116:105–121
Wang C, Zhang H, Shan X, Ma J, Liu Z, Cheng S, Lu G, Tang Y, Guo Z (2004) Applying SAR interferometry for ground deformation detection in China. Photogramm Eng Remote Sens 70(10):1157–1165
Xue YQ, Zhang Y, Ye SJ, Wu JC, Li QF (2005) Land subsidence in China. Environ Geol 48:713–720
Acknowledgments
SAR data are provided by the European Space Agency (ESA) in the scope of 9386 CAT-1 project. This research was supported by PRX 12/00297, ESP2006-28463-E, Consolider–Ingenio 2010 Programme (Topo-Iberia project) CSD2006–0041 (Consolider), AYA2010-15501 projects from Ministerio de Ciencia e Innovación (Spain). In addition, it was supported by the RNM-282 and RNM148 research groups and the P09-RNM-5388 project from the Junta de Andalucía (Spain). The first author has been also funded by a Juan de la Cierva grant (JCI-2011-09178) from Ministerio de Ciencia e Innovación. Interferometric data were processed using the public domain SAR processor DORIS and StaMPS/MTI. The DEM is freely provided by © Instituto Geográfico Nacional de España. The satellite orbits used are from Delft University of Technology and ESA.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ruiz-Constán, A., Ruiz-Armenteros, A.M., Lamas-Fernández, F. et al. Multi-temporal InSAR evidence of ground subsidence induced by groundwater withdrawal: the Montellano aquifer (SW Spain). Environ Earth Sci 75, 242 (2016). https://doi.org/10.1007/s12665-015-5051-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12665-015-5051-x