Skip to main content

Advertisement

Log in

The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A software platform was developed to facilitate the development of 3D geological models of sedimentary media for hydrogeological modelling, especially for urban environments. It is composed by a geospatial database and a set of tools that enable the user to perform an accurate stratigraphic analysis. The geospatial database is used for the management of a large amount of different data types coming from different sources (geophysical logs, borehole logs, hydraulic tests, etc.). Its structure allows us to store accurate and very detailed geological borehole-log description that can be straightforwardly generalized and further upscaled. The set of stratigraphic analysis instruments, working within a Geographical Information System (GIS) environment, has been set up to facilitate the geological data interpretation. Detailed stratigraphic columns of the selected boreholes can be generated using customized queries. Creating automatically a geological profile is further possible by displaying the boreholes lithological columns and the geophysical and geotechnical field-tests’ results together with the defined stratigraphic units. Based on an interactive analysis environment is created, where the user is able to analyze and to define the possible existing correlation surfaces, units, and faults. The obtained information represented by the geological units/subunits can be then converted within a 3D environment. The resulted 3D features could be used within the same GIS environment or by external software packages for further stochastic analysis or to build up 3D geological and hydrogeological models. Starting from an accurate and very detailed geological description, the software allows us to represent in three dimensions (3D) the heterogeneity of the sedimentary media and their spatial distribution. Thus, it shows how connectivity implemented into hydrogeological models among the different sedimentary bodies plays an important role. Results are shown consisting in a case study located in the Besòs River Delta, in the metropolitan area of Barcelona, on the Mediterranean coast in NE Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • 3DGeomodeller (2008) Intrepid Geophysics & BRGM. Available at: http://www.geomodeller.com/geo/index.php. Accessed 18 May 2012

  • Barazzuoli P, Bouzelboudjen M, Cucini S, Kiraly L, Menicori P, Salleolini M (1999) Holocenic alluvial aquifer of the River Cornia coastal plain (southern Tuscany, Italy): database design for groundwater management. Environ Geol 39(2):123–143

    Article  Google Scholar 

  • Bonomi T (2009) Database development and 3D modeling of textural variations in heterogeneous, unconsolidated aquifer media: application to the Milan plain. Comput Geosci 35:134–145

    Article  Google Scholar 

  • Borgomano JRF, Fournier F, Viseur S, Rijkels L (2008) Stratigraphic well correlations for 3-D static modeling of carbonate reservoirs. AAPG Bulletin 92:789–824

    Article  Google Scholar 

  • Brodie RS (1999) Integrating GIS and RDBMS technologies during construction of a regional groundwater model. Environ Model Softw 14:119–128

    Article  Google Scholar 

  • Carneiro J, Carvalho JM (2010) Groundwater modeling as an urban planning tool: issues raised by a small-scale model. Q J Eng Geol Hydrogeol 43:157–170

    Article  Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2008) The Basin of Mexico Hydrogeological Database (BMHDB): implementation, queries and interaction with open source software. Environ Model Softw 23:1271–1279

    Article  Google Scholar 

  • Chaaban F, Darwishe H, Louche B, Battiau-queney Y, Masson E, El Khattabi J, Carlier E (2012) Geographical information system approach for environmental management in coastal area (Hardelot-Plage, France). Environ Earth Sci 65:185–193

    Article  Google Scholar 

  • Chang YS, Park D (2004) Development of a web based Geographic Information System for the management of borehole and geological data. Comput Geosci 30:887–897

    Article  Google Scholar 

  • Chesnaux R, Lambert M, Walter J, Fillastre U, Hay M, Rouleau A, Daigneault R, Moisan A, Germaneau D (2011) Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: application to the Sauguenay-Lac-St.-Jean region, Canada. Comput Geosci 37:1870–1882

    Google Scholar 

  • Comunian A, Renard P (2009) Introducing wwhypda: a world-wide collaborative hydrogeological parameters database. Hydrogeol J 17:481–489b

    Article  Google Scholar 

  • Cox SJD (2004) XMML Online DataTransfer for the Exploration and Mining Industry. Report M340. Minerals and Energy Research Institute of Western Australia, Department of Industry & Resources, Perth, p 311

  • Culshaw MG, Price SJ (2011) The 2010 Hans Cloos lecture. The contribution of urban geology to the development, regeneration and conservation of cities. Bull Eng Environ 70:333–376

    Article  Google Scholar 

  • Custodio E, Llamas MR (1983) Hidrología Subterránea. Ediciones Omega, Barcelona

    Google Scholar 

  • de Dreuzy JR, Bodin J, Le Grand H, Davy P, Boulanger D, Battais A, Bour B, Gouze P, Porel G (2006) General database for ground water site information. Ground Water 44(5):743–748

    Google Scholar 

  • Deutch C, Journal A (1998) GSLIB Geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Earthvision (2012) Dynamic Graphics, Inc. Available at: http://www.dgi.com/earthvision/evmain.html. Accessed 18 May 2012

  • EQuIS (2012) Earthsoft Inc. Available at: www.earthsoft.com. Accessed 18 May 2012

  • Escorcia J (2010) Modelación de los trabajos de tunelaje: una nueva herramienta para la toma de decisiones en tiempo real. Master Thesis. Universitat Politecnica de Catalunya, Barcelona

  • EVS and MVS (2012) CTech Development Corporation. Available at: http://www.ctech.com/. Accessed 18 May 2012

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Inc, New Jersey

    Google Scholar 

  • Gàmez D, Simó JA, Lobo FJ, Barnolas A, Carrera J, Vázquez-Suñé E (2009) Onshore-Offsore correlation of the Llobregat deltaic system, Spain: development of deltaic geometries under different relative sea-level and growth fault influences. Sed Geol 217(2009):65–84

    Article  Google Scholar 

  • GID (2012) CIMNE International centre for numerical methods in engineering (Barcelona, Spain). Available at: http://gid.cimne.upc.es. Accessed 22 May 2012

  • Gintsoftware (2011) Bentley Systems, Incorporated. Available at: http://www.gintsoftware.com/. Accessed 21 May 2012

  • Gocad (2011) gOcad research group ASGA. Available at: http://www.gocad.org. Accessed 18 May 2012

  • Gogu RC, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS based hydrogeological databases and groundwater modelling. Hydrogeol J 9(6):555–569

    Article  Google Scholar 

  • Gogu RC, Velasco V, Vázquez-Suñè E, Gaitanaru D, Chitu Z, Bica I (2011) Sedimentary media analysis platform for groundwater modelling in urban areas. Adv Res Aquatic Environ 5:489–496

    Article  Google Scholar 

  • Hydrogeoanlyst (2011) Schlumberger Water Services. Available at: http://www.swstechnology.com/groundwater-software/groundwater-data-visualization/hydro-geoanalyst. Accessed 1 June 2012

  • Illinois State Geological Survey (2012) Available at: http://www.isgs.illinois.edu/maps-data-pub/coal-maps/strat-database/reprint1993c.pdf. Accessed 1 June 2012

  • International Commission on Stratigraphy (ICS) (2012) Available at: http://www.stratigraphy.org/. Accessed 1 June 2012

  • Kaufmann O, Martin T (2008) 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput Geosci 34:278–290

    Article  Google Scholar 

  • Kessler H, Mathers S, Sobish HG (2009) The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Comput Geosci 35:1311–1321

    Article  Google Scholar 

  • Lake R (2005) The application of geography markup language (GML) to the geological sciences. Comput Geosci 31:1081–1094

    Article  Google Scholar 

  • Leapfrog3D (2012) ARANZ Geo Limited. Available at: http://www.leapfrog3d.com/. Accessed 18 May 2012

  • Maidment DR (2002) Arc Hydro: GIS for water resources. ESRI Press, Redlands, p 222

    Google Scholar 

  • McCarthy JD, Graniero PA (2006) A GIS-based borehole management and 3D visualization system. Comput Geosci 32:1699–1708

    Article  Google Scholar 

  • Medina A, Carrera J (2003) Geostatistic inversion of coupled problems: dealing with computational burden and different types of data. J Hydrol 281:251–264

    Article  Google Scholar 

  • Ming J, Pan M, Qu H, Ge Z (2010) GSIS: a 3D geological multy-body modeling system from netty cross-sections with topology. Comput Geosci 36:756–767

    Article  Google Scholar 

  • Pokrajac D (1999) Interrelation of wastewater and groundwater management in the city of Bijeljina in Bosnia. Urban Water 1:243–255

    Article  Google Scholar 

  • Pujades E, Carrera J, Vázquez-Suñé E, Jurado A, Vilarrasa V, Mascuñano-Salvador E (2011) Hydraulic characterization of diaphragm walls for cut and cover tunnelling. Eng Geol. doi:10.1016/j.enggeo.2011.10.012

    Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied geostatistic with SGems. Cambridge University Press, New York

    Book  Google Scholar 

  • Rienzo F, Oreste P, Pelizza (2008) Subsurface geological-geotechnical modeling to sustain underground civil planning. Eng Geol 96:187–204

    Article  Google Scholar 

  • Riera J (2011). L’estudi del comportament hidrogeològic de l’aquifer del Besòs en les rodalies del campus ciutadella de la Universitat Pompeu Fabra mitjançant un model numèric del flux.Master Thesis. Universitat Politecnica de Catalunya, Barcelona

  • Robins NS, Rutter HK, Dumplenton S, Peach DW (2005) The role of 3D visualization as an analytical tool preparatory to numerical modeling. J Hydrogeol 301:287–295

    Google Scholar 

  • RockWare GIS link 2(2012) Rockware, Inc. Available at: www.rockware.com. Accessed 31 May 2012

  • Rockworks (2012) Rockware, Inc. Available at: www.rockware.com. Accessed 18 May 2012

  • Ross M, Parent M, Lefebvre R (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeol J 13:690–707

    Article  Google Scholar 

  • Sen M, Duffy T (2005) GeoSciML: development of a generic GeoScience Markup Language. Comput Geosci 31:1095–1103

    Article  Google Scholar 

  • Strassberg G (2005) A geographic data model for groundwater systems. Dissertation, University of Texas, Austin, p 229

  • Target for ArcGIS 3.5 (2011) Geosoft Inc. Available at: http://www.geosoft.com/. Accessed 22 May 2012

  • The Australian National Groundwater Data Transfer Standard (1999) National groundwater committee working group on national groundwater data standards. Canberra, Australia

  • Tubau I, Vázquez-Suñé E, Carrera J, Gonzalez S, Petrovic M, Lopez de Alda M, Barceló D (2010) Occurrence and fate of alkylphenol polyethoxylate degradation products and linear alkylbenzene sulfonate surfactants in urban ground water: Barcelona case study. J Hydrol 383:102–110

    Article  Google Scholar 

  • UPC (2003) Codigo Visual Transin 1.1 R65. Developed in the Department of Geotechnical Engineering and Geosciences (ETCG), Universitat Politecnica de Catalunya (UPC), Barcelona

  • Vázquez-Suñé E, Sánchez-Vila X, Carrera J (2005) Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol J 13:522–533

    Article  Google Scholar 

  • Vázquez-Suñé E, Abarca E, Carrera J, Capino B, Pool M, Gámez D, Simó T, Batlle F, Niñerola JM, Ibáñez X (2006) Groundwater modelling as a tool for the European Water Framework Directive (WFD) application: the Llobregat case. Phys Chem Earth 31:1015–1029

    Article  Google Scholar 

  • Velasco V, Cabello P, Vázquez-Suñè E, López-Blanco M, Ramos E, Tubau I (2012) A stratigraphic sequence based geological model for constraining hydrogeological modeling in the urbanized area of the Quaternary Besòs Delta (NW Mediterranean Coast, Spain). Geologica Acta. doi:10.101344/105.000001757

    Google Scholar 

  • Vogt J (2002) Guidance Document on Implementing the GIS Elements of the Water Framework Directive. Technical report, Commission of the European Communities

  • Vulcan (2012) Maptek Pty Ltd. Available at: http://www.maptek.com/products/vulcan/. Accessed 18 May 2012

  • Whiteaker TL, Jones N, Strassberg G, Lemon A, Gallup D (2012) GIS-based data model and tools for creating and managing two-dimensional cross-sections. Comput Geosci 39:42–49

    Article  Google Scholar 

  • Wojda P, Brouyère S, Derouane J, Dassargues A (2010) Hydrocube: an entity-relationship hydrogeological data model. Hydrogeol J 18:1953–1962

    Article  Google Scholar 

  • Wu Q, Xu H, Zhou W (2008) Development of a 3D GIS and its application to karst areas. Environ Geol 54:1037–1045

    Article  Google Scholar 

  • Wycisk P, Gossel W, Neumann Ch (2009) High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megacities. Comput Geosci 35:165–182

    Article  Google Scholar 

  • XMML (2006) XMML web site: Solid Earth and Environment GRID, CSIRO. Available at: https://www.seegrid.csiro.au/wiki/Xmml/WebHome. Accessed 19 May 2012

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (HEROS project: CGL2007-66748 and MEPONE project: BIA2010-20244 and MODELGEO CGL2010-15294); the Spanish Ministry of Industry (GEO-3D Project: PROFIT 2007-2009; and the Generalitat de Catalunya (Grup Consolidat de Recerca: Grup d’Hidrologia Subterrània, 2009-SGR-1057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Velasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, V., Gogu, R., Vázquez-Suñè, E. et al. The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment. Environ Earth Sci 68, 2145–2162 (2013). https://doi.org/10.1007/s12665-012-1898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1898-2

Keywords

Navigation