Skip to main content

Advertisement

Log in

Assessment of Lingual Stability in Mandible Fracture: Monocortical Versus Bicortical Fixation Using FEM Analysis

  • Original Article
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Aim of the study

The present study compares lingual stability of monocortical miniplate fixation with that of bicortical miniplate fixation in parasymphysis fracture using FEM analysis.

Materials and methods

Using multislice CT scanner, 3D FEM of patient’s mandible was created. Fracture was simulated at parasymphysis region and fixed with 2-mm titanium miniplates and screws of length 8, 10, 12 mm, respectively. Loading force of 120 N applied at molar region and 62.8 N at incisor region. These three models were imported into ANSYS Workbench FEM software.

Result

There is no significant difference in results between bicortical fixation and monocortical fixation.

Conclusion

It was concluded that use of monocortical fixation provides sufficient lingual stability. This suggests monocortical fixation system is as reliable as bicortical fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hart RT, Hennebel VV, Thongpreda N et al (1992) Modeling the biomechanics of the mandible: a three-dimensional finite element study. J Biomech 25:261

    Article  CAS  Google Scholar 

  2. KoriothTW VersluisA (1997) Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit Rev Oral Biol Med 8:90

    Article  Google Scholar 

  3. Fernandez JR, Gallas M, Burquera M, Viano JM (2003) A three-dimensional numerical simulation of mandible fracture reduction with screwed miniplates. J Biomech 36:329–337

    Article  Google Scholar 

  4. Wagner A, Krach W, Schicho K, Undt G, Ploder O, Ewers R (2002) A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94:678–686

    Article  Google Scholar 

  5. Lovald ST, Wagner JD, Baack B (2009) Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures. J Oral Maxillofac Surg 67:973–985

    Article  Google Scholar 

  6. Lovald ST, Khraishi T, Wagner J, Baack B, Kelly J, Wood J (2006) Comparison of plate-screw systems used in mandibular fracture reduction: finite element analysis. J Biomech Eng 128:654–662

    Article  Google Scholar 

  7. Joshi U, Kurakar M (2014) Comparison of stability of fracture segments in mandible fracture treated with different designs of mini-plates using FEM analysis. J Maxillofac Oral Surg 13(3):310–319

    Article  Google Scholar 

  8. Iseri H, Tekkaya E, Oztan O, Bilgic S (1998) Biomechanical effects of rapid maxillary expansion on the craniofacial skeleton studied by the finite element method. Eur J Orthod 20:347–356

    Article  CAS  Google Scholar 

  9. Chuong CJ, Borotikar B, Schwartz-Dabney C, Sinn DP (2005) Mechanical characteristics of the mandible after bilateral sagittal split ramus osteotomy: comparing 2 different fixation techniques. J Oral Maxillofac Surg 63:68–76

    Article  Google Scholar 

  10. Korkmaz HH (2007) Evaluation of different mini-plates in fixation of fractured human mandible with the finite element method. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:1–13

    Article  Google Scholar 

  11. Van Eijden TMGJ, Korfage JAM, Brugma P (1997) Architecture of the human jaw: closing and jaw-opening muscles. Anat Rec 248:464–474

    Article  Google Scholar 

  12. Meijer HJA, Starmans FJM, Bosman F, Sten WHA (1993) A comparison of three finite element models of an edentulous mandible provided with implants. J Oral Rehab 20:147–157

    Article  CAS  Google Scholar 

  13. Tate G, Ellis E III, Throckmorton GS (1994) Bite forces in patients treated for mandibular angle fractures. J Oral Maxillofac Surg 52:734–736

    Article  CAS  Google Scholar 

  14. ANSYS—Engineering Analysis System (1989) Theoretical manual- theory reference. Swanson Analysis Systems, Canonsburg

  15. Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop 138:175

    Google Scholar 

  16. Spiessl B (1989) Internal fixation of the mandible: a manual of AO/ASIF principles. Springer, Berlin

    Book  Google Scholar 

  17. Michelet FX, Deymes J, Dessus B (1973) Osteosynthesis with miniaturized screwed plates in maxillofacial surgery. J Maxillofac Surg 1:79–84

    Article  CAS  Google Scholar 

  18. Champy M, Lodde JP, Schmitt R et al (1978) Mandibular osteosynthesis by miniature screwed plates via a buccal approach. J Maxillofac Surg 6:14–21

    Article  CAS  Google Scholar 

  19. Schwyer HK, Cordey J, Brun S et al (1985) Bone loss after internal fixation using plates determination in humans using computed tomography. In: Perren SM, Schneider E (eds) Biomechanics: current interdisciplinary research. Nijhoff, Dordrecht, p 191

    Chapter  Google Scholar 

  20. Kerawala CJ, Allan W, Williams ED (2003) Can monocortical miniplates provide bony compression? An experimental model. Br J Oral Maxillofac Surg 41:232–235

    Article  CAS  Google Scholar 

  21. Raveh J, Vuillemin T, Ladrach K et al (1987) Plate osteosynthesis of 367 mandible fractures. J Craniomaxillofac Surg 15:244–253

    Article  CAS  Google Scholar 

  22. Braut V, Bornstein MM, Kuchler U, Buser D (2014) Bone dimensions in the posterior mandible: a retrospective radiographic study using CBCT. Part 2; analysis of edentulous site. Int J Periodontics Restorative Dent 34(5):639–647

    Article  Google Scholar 

  23. Tams J, Van Loon JP, Rozema FR et al (1996) A three-dimensional study of loads across the fracture for different fracture sites of the mandible. Br J Oral Maxillofac Surg 34:400–404

    Article  CAS  Google Scholar 

  24. Ji B, Wang C, Liu L et al (2010) A biomechanical analysis of titanium miniplates used for treatment of mandibular symphyseal fractures with the finite element method. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e21

    Article  Google Scholar 

  25. Arbag H, Korkmaz HH, Ozturk K et al (2008) Comparative evaluation of different miniplates for internal fixation of mandible fractures using finite element analysis. J Oral Maxillofac Surg 66:1225

    Article  Google Scholar 

  26. Andersen KL, Pedersen EH, Melsen B (1991) Material parameters and stress profiles within the periodontal ligament. Am J Orthod Dentofacial Orthop 99:427

    Article  CAS  Google Scholar 

  27. Harada K, Watanabe M, Ohkura K, Enomoto S (2000) Measure of bite force and occlusal contact area before and after bilateral sagittal split rams osteotomy of the mandible using a new pressure- sensitive device. A preliminary report. J Oral Maxillofac Surg 58:370–373

    Article  CAS  Google Scholar 

  28. Giri KY, Sahu P, Rastogi S, Dandriyal R, Mall S, Singh AP, Indra BNP, Singh HP (2015) Bite force evaluation of conventional plating system versus locking plating system for mandibular fracture. J Maxillofac Oral Surg 14(4):972–978

    Article  Google Scholar 

  29. Tams J, van Loon J-P, Otten E et al (1997) A three-dimensional study of bending and torsion moments for different fracture sites of the mandible: an in vitro study. Int J Oral Maxillofac Surg 26:383

    Article  CAS  Google Scholar 

  30. Sugiura T, Yamamoto K, Murakami K et al (2009) Biomechanical analysis of miniplate osteosynthesis for fractures of the atrophic mandible. J Oral Maxillofac Surg 67:2397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Kurakar.

Ethics declarations

Conflict of interest

Dr. Udupikrishna Joshi and Dr. Manju Kurakar declare that we have no conflict of interest in this study.

Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors. For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, U., Kurakar, M. Assessment of Lingual Stability in Mandible Fracture: Monocortical Versus Bicortical Fixation Using FEM Analysis. J. Maxillofac. Oral Surg. 17, 514–519 (2018). https://doi.org/10.1007/s12663-017-1073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-017-1073-0

Keywords

Navigation