A multi-verse optimizer algorithm for ambulance repositioning in emergency medical service systems

Abstract

In an emergency medical system, customer coverage is directly affected by how ambulances are allocated to customers and how they should be returned to stations. The purpose of this paper is to obtain the best return strategy for ambulances to maximize the expected coverage concerning a predefined dispatch policy. A hypercube queuing model is presented to maximize customers' coverage probability, in which locations of busy ambulances in each state are not known and approximated based on customer arrival rates. In the proposed repositioning model, only newly-available ambulances are moved to the free stations according to the predetermined return strategy. Some small- and medium-scale instances are solved exactly using the Gaussian elimination method. Multi-Verse Optimizer and Genetic algorithms are used in combination with the discrete-event simulation for solving large-sized problems. Moreover, real data from a case study are utilized to verify the performance of the proposed models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abasi AK, Khader AT, Al-Betar MA, Naim S, Alyasseri ZAA, Makhadmeh SN (2020a) An ensemble topic extraction approach based on optimization clusters using hybrid multi-verse optimizer for scientific publications. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02439-4

    Article  Google Scholar 

  2. Abasi AK, Khader AT, Al-Betar MA, Naim S, Makhadmeh SN, Alyasseri ZAA (2020b) Link-based multi-verse optimizer for text documents clustering. Appl Soft Comput 87:106002

    Article  Google Scholar 

  3. Alanis R, Ingolfsson A, Kolfal B (2013) A Markov chain model for an EMS system with repositioning. Prod Oper Manag 22(1):216–231

    Article  Google Scholar 

  4. Al-Madi N, Faris H, Mirjalili S (2019) Binary multi-verse optimization algorithm for global optimization and discrete problems. Int J Mach Learn Cybern 10(12):3445–3465

    Article  Google Scholar 

  5. Bélanger V, Kergosien Y, Ruiz A, Soriano P (2016) An empirical comparison of relocation strategies in real-time ambulance fleet management. Comput Ind Eng 94:216–229

    Article  Google Scholar 

  6. Benabdouallah M, Bojji C (2017) Comparison between GA and ACO for emergency coverage problem in a smart healthcare environment. In: Proceedings of the 2017 International Conference on Smart Digital Environment, pp 48–55

  7. Benmessahel I, Xie K, Chellal M (2018) A new evolutionary neural networks based on intrusion detection systems using multi-verse optimization. Appl Intell 48(8):2315–2327

    Article  Google Scholar 

  8. Chanta S, Mayorga ME, McLay LA (2014) Improving emergency service in rural areas: a bi-objective covering location model for EMS systems. Ann Oper Res 221(1):133–159

    MathSciNet  Article  Google Scholar 

  9. Chuang CL, Lin RH (2007) A maximum expected covering model for an ambulance location problem. J Chin Inst Ind Eng 24(6):468–474

    MathSciNet  Google Scholar 

  10. Dibene JC, Maldonado Y, Vera C, de Oliveira M, Trujillo L, Schütze O (2017) Optimizing the location of ambulances in Tijuana, Mexico. Comput Biol Med 80:107–115

    Article  Google Scholar 

  11. Doerner KF, Gutjahr WJ, Hartl RF, Karall M, Reimann M (2005) Heuristic solution of an extended double-coverage ambulance location problem for Austria. Cent Europ J Oper Res 13(4):325–340

    MATH  Google Scholar 

  12. Erdoğan G, Erkut E, Ingolfsson A, Laporte G (2010) Scheduling ambulance crews for maximum coverage. J Oper Res Soc 61(4):543–550

    Article  Google Scholar 

  13. Faris H, Hassonah MA, Ala’M AZ, Mirjalili S, Aljarah I (2018) A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput Appl 30(8):2355–2369

    Article  Google Scholar 

  14. Fathy A, Rezk H (2018) Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy 143:634–644

    Article  Google Scholar 

  15. Gendreau M, Laporte G, Semet F (1997) Solving an ambulance location model by tabu search. Loc Sci 5(2):75–88

    Article  Google Scholar 

  16. Gendreau M, Laporte G, Semet F (2001) A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Comput 27(12):1641–1653

    Article  Google Scholar 

  17. Gendreau M, Laporte G, Semet F (2006) The maximal expected coverage relocation problem for emergency vehicles. J Oper Res Soc 57(1):22–28

    Article  Google Scholar 

  18. Ghobadi M, Arkat J, Tavakkoli-Moghaddam R (2019) Hypercube queuing models in emergency service systems: a state-of-the-art review. Sci Iran Trans E Ind Eng 26(2):909–931

    Google Scholar 

  19. Hatta WALWM, Lim CS, Abidin AFZ, Azizan MH, Teoh SS (2013) Solving maximal covering location with particle swarm optimization. Int J Eng Tech 5(4):3301–3306

    Google Scholar 

  20. Iannoni AP, Morabito R, Saydam C (2009) An optimization approach for ambulance location and the districting of the response segments on highways. Eur J Oper Res 195(2):528–542

    Article  Google Scholar 

  21. Ingolfsson A, Budge S, Erkut E (2008) Optimal ambulance location with random delays and travel times. Health Care Manag Sci 11(3):262–274

    Article  Google Scholar 

  22. Jagtenberg CJ, Bhulai S, Van der Mei RD (2015) An efficient heuristic for real-time ambulance redeployment. Oper Res Health Care 4:27–35

    Article  Google Scholar 

  23. Jagtenberg CJ, Bhulai S, Van der Mei RD (2017) Dynamic ambulance dispatching: is the closest-idle policy always optimal? Health Care Manag Sci 20(4):517–531

    Article  Google Scholar 

  24. Kolesar P, Walker WE (1974) An algorithm for the dynamic relocation of fire companies. Oper Res 22(2):249–274

    Article  Google Scholar 

  25. Kumar P, Garg S, Singh A, Batra S, Kumar N, You I (2018) MVO-based 2-D path planning scheme for providing quality of service in UAV environment. IEEE Internet Things J 5(3):1698–1707

    Article  Google Scholar 

  26. Larson RC (1974) A hypercube queuing model for facility location and redistricting in urban emergency services. Comput Oper Res 1(1):67–95

    Article  Google Scholar 

  27. Maxwell MS, Restrepo M, Henderson SG, Topaloglu H (2010) Approximate dynamic programming for ambulance redeployment. INFORMS J Comput 22(2):266–281

    MathSciNet  Article  Google Scholar 

  28. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  29. Nasrollahzadeh AA, Khademi A, Mayorga ME (2018) Real-time ambulance dispatching and relocation. M&SOM-Manuf Serv Oper Manag 20(3):467–480

    Article  Google Scholar 

  30. Pacheco SM, Schütze O, Vera C, Trujillo L, Maldonado Y (2015) Solving the ambulance location problem in Tijuana-Mexico using a continuous location model. In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 2631–2638

  31. Sasaki S, Comber AJ, Suzuki H, Brunsdon C (2010) Using genetic algorithms to optimise current and future health planning-the example of ambulance locations. Int J Health Geogr 9(1):1–10

    Article  Google Scholar 

  32. Sayed GI, Darwish A, Hassanien AE (2019) Quantum multi-verse optimization algorithm for optimization problems. Neural Comput 31(7):2763–2780

    Article  Google Scholar 

  33. Schmid V (2012) Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. Eur J Oper Res 219(3):611–621

    MathSciNet  Article  Google Scholar 

  34. Schmid V, Doerner KF (2010) Ambulance location and relocation problems with time-dependent travel times. Eur J Oper Res 207(3):1293–1303

    MathSciNet  Article  Google Scholar 

  35. Shuib A, Zaharudin ZA (2011) TAZ_OPT: A goal programming model for ambulance location and allocation. In: 2011 IEEE Colloquium on Humanities, Science and Engineering. IEEE, pp 945–950

  36. Shukri S, Faris H, Aljarah I, Mirjalili S, Abraham A (2018) Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer. Eng Appl Artif Intell 72:54–66

    Article  Google Scholar 

  37. Sudtachat K, Mayorga ME, Mclay LA (2016) A nested-compliance table policy for emergency medical service systems under relocation. Omega 58:154–168

    Article  Google Scholar 

  38. Toro-DíAz H, Mayorga ME, Chanta S, Mclay LA (2013) Joint location and dispatching decisions for emergency medical services. Comput Ind Eng 64(4):917–928

    Article  Google Scholar 

  39. Van Barneveld TC, Bhulai S, Van der Mei RD (2017) A dynamic ambulance management model for rural areas. Health Care Manag Sci 20(2):165–186

    Article  Google Scholar 

  40. Wang H, Huang M, Wang J (2019) An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs. J Intell Manuf 30(7):2733–2742

    Article  Google Scholar 

  41. Yuangyai C, Nilsang S, Cheng CY (2020) Robust ambulance base allocation strategy with social media and traffic congestion information. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-01889-0

    Article  Google Scholar 

  42. Zhang R, Zeng B (2018) Ambulance deployment with relocation through robust optimization. IEEE Trans Autom Sci Eng 16(1):138–147

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jamal Arkat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golabian, H., Arkat, J., Tavakkoli-Moghaddam, R. et al. A multi-verse optimizer algorithm for ambulance repositioning in emergency medical service systems. J Ambient Intell Human Comput (2021). https://doi.org/10.1007/s12652-021-02918-2

Download citation

Keywords

  • Emergency medical service system
  • Ambulance repositioning
  • Return strategy
  • Hypercube queuing model
  • Multi-verse optimizer