A multi-period maximal coverage model for locating simultaneous ground and air emergency medical services facilities


In many cases where emergency medical services are required, ground and air ambulances cooperate in a shared activity to transfer the injured from the accident scene to treatment centers. The cooperation becomes necessary, particularly where the air ambulance can not land at the accident scene, and it sometimes seems essential to make use of transfer points during the cooperation. Given that the demand pattern might change during time, it does not seem logical to formulate the problem statically. Hence, in this paper, we have presented a multi-period maximal coverage location model, which simultaneously locates the transfer points, ground ambulance stations, air ambulance stations, and allocates ambulances to them. Also, the available ambulances are moved among the established stations if required subject to demand changes during the planning horizon. Coverage is provided based on the times it takes the ambulance to arrive at the accident scene and to transfer from the accident scene to the nearest treatment center. In this research, four methods of providing service to the injured and transferring them to treatment centers have been considered. In the presented model, the inaccessibility of ambulances has been considered in light of the notion of backup coverage. Given the complexity of the problem and the impossibility to solve it optimally at large-scale problems, a heuristic algorithm with the greedy approach has been presented for solving it. The obtained computational results demonstrate the efficiency of the proposed algorithm in solving different problems as compared to CPLEX.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Ahmadi-Javid A, Seyedi P, Syam SS (2017) A survey of healthcare facility location. Comput Oper Res 79:223–263

    MathSciNet  Article  Google Scholar 

  2. Badri MA, Mortagy AK, Alsayed CA (1998) A multi-objective model for locating fire stations. Eur J Oper Res 110:243–260

    Article  Google Scholar 

  3. Başar A, Çatay B, Ünlüyurt T (2011) A multi-period double coverage approach for locating the emergency medical service stations in Istanbul. J Oper Res Soc 62:627–637

    Article  Google Scholar 

  4. Belanger V, Lanzarone E, Nicoletta V, Ruiz A, Soriano P (2020) A recursive simulation-optimization framework for the ambulance location and dispatching problem. Eur J Oper Res

  5. Bozorgi-Amiri A, Tavakoli S, Mirzaeipour H, Rabbani M (2017) Integrated locating of helicopter stations and helipads for wounded transfer under demand location uncertainty. Am J Emerg Med 35:410–417

    Article  Google Scholar 

  6. Branas CC, MacKenzie EJ, ReVelle CS (2000) A trauma resource allocation model for ambulances and hospitals. Health Serv Res 35:489

    Google Scholar 

  7. Church R, ReVelle CR (1974) The maximal covering location problem. Pap Reg Sci 32:101–118

    Article  Google Scholar 

  8. Daskin MS, Stern EH (1981) A hierarchical objective set covering model for emergency medical service vehicle deployment. Transp Sci 15:137–152

    MathSciNet  Article  Google Scholar 

  9. Degel D, Wiesche L, Rachuba S, Werners B (2015) Time-dependent ambulance allocation considering data-driven empirically required coverage. Health Care Manag Sci 18:444–458

    Article  Google Scholar 

  10. DeHart RL, Davis JR (2002) Fundamentals of aerospace medicine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  11. Erdemir ET, Batta R, Rogerson PA, Blatt A, Flanigan M (2010) Joint ground and air emergency medical services coverage models: a greedy heuristic solution approach. Eur J Oper Res 207:736–749

    MathSciNet  Article  Google Scholar 

  12. Erdemir ET, Batta R, Spielman S, Rogerson PA, Blatt A, Flanigan M (2008) Optimization of aeromedical base locations in New Mexico using a model that considers crash nodes and paths. Accid Anal Prev 40:1105–1114

    Article  Google Scholar 

  13. Fulton LV, Lasdon LS, McDaniel RR Jr, Coppola MN (2010) Two-stage stochastic optimization for the allocation of medical assets in steady-state combat operations. J Defense Model Simul 7:89–102

    Article  Google Scholar 

  14. Furuta T, Tanaka K-I (2010) A maximal covering model for helicopter emergency medical systems. In: Paper presented at the the ninth international symposium on operations research and its applications (ISORA’10) Chengdu-Jiuzhaigou, China

  15. Furuta T, Tanaka K-i (2013) Minisum and minimax location models for helicopter emergency medical service systems. J Oper Res Soc Japan 56:221–242

    MathSciNet  MATH  Google Scholar 

  16. Gendreau M, Laporte G, Semet F (1997) Solving an ambulance location model by tabu search. Locat Sci 5:75–88

    Article  Google Scholar 

  17. Gendreau M, Laporte G, Semet F (2001) A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Comput 27:1641–1653

    Article  Google Scholar 

  18. Gendreau M, Laporte G, Semet F (2006) The maximal expected coverage relocation problem for emergency vehicles. J Oper Res Soc 57:22–28

    Article  Google Scholar 

  19. Gould PR, Leinbach TR (1966) Approach to the geographic assignment of hospital services. Tijdschrift voor Economische en Sociale Geografie 57:203–206

    Google Scholar 

  20. Hogan K, ReVelle C (1986) Concepts and applications of backup coverage. Manag Sci 32:1434–1444

    Article  Google Scholar 

  21. Mohri SS, Akbarzadeh M, Matin SHS (2020) A hybrid model for locating new emergency facilities to improve the coverage of the road crashes. Socio Econ Plan Sci 69:100683

    Article  Google Scholar 

  22. Navazi F, Tavakkoli-Moghaddam R, Sazvar Z (2018) A multi-period location-allocation-inventory problem for ambulance and helicopter ambulance stations: robust possibilistic approach. IFAC-PapersOnLine 51:322–327

    Article  Google Scholar 

  23. Niroomand S, Bazyar A, Alborzi M, Mahmoodirad A (2018) A hybrid approach for multi-criteria emergency center location problem considering existing emergency centers with interval type data: a case study. J Ambient Intell Humaniz Comput 9:1999–2008

    Article  Google Scholar 

  24. Rajagopalan HK, Saydam C, Xiao J (2008) A multiperiod set covering location model for dynamic redeployment of ambulances. Comput Oper Res 35:814–826

    Article  Google Scholar 

  25. Rivera-Royero D, Galindo G, Yie-Pinedo R (2016) A dynamic model for disaster response considering prioritized demand points. Socio Econ Plan Sci 55:59–75

    Article  Google Scholar 

  26. Schmid V, Doerner KF (2010) Ambulance location and relocation problems with time-dependent travel times. Eur J Oper Res 207:1293–1303

    MathSciNet  Article  Google Scholar 

  27. Shahriari M, Bozorgi-Amiri A, Tavakoli S, Yousefi-Babadi A (2017) Bi-objective approach for placing ground and air ambulance base and helipad locations in order to optimize EMS response. Am J Emerg Med 35(12):1873–1881

    Article  Google Scholar 

  28. Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res 19:1363–1373

    Article  Google Scholar 

  29. Van-Barneveld T, Jagtenberg C, Bhulai S, van der Mei R (2018) Real-time ambulance relocation: assessing real-time redeployment strategies for ambulance relocation. Socio Econ Plan Sci 62:129–142

    Article  Google Scholar 

  30. Zhang M, Zhang Y, Qiu Z, Wu H (2019) Two-stage covering location model for air-ground medical rescue system. Sustainability 11:3242

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Abdolsalam Ghaderi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Linearization of constraint 16

Appendix: Linearization of constraint 16

As noted, constraint 16 is a non-linear equation that has led to the non-linearization of the model. In this appendix, the linearization of this constraint is given using some standard techniques.

$$ {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} = {\text{S}}_{{{\text{ah}}}}^{{\text{t}}} {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} ,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{t}} \in {\uptau }, $$
$$ {\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} = {\text{I}}_{{{\text{ahr}}}}^{{\text{t}}} {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} \;,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{r}} \in {\text{R}},{\text{t}} \in {\uptau }. $$

Auxiliary integer variable \({\text{v}}_{{{\text{ah}}}}^{{\text{t}}}\) was replaced with the multiplication of the two binary variable \({\text{S}}_{{{\text{ah}}}}^{{\text{t}}}\) and integer variable\({{x^{\prime}}}_{{\text{a}}}^{{\text{t}}}\). Auxiliary integer variable \({\text{w}}_{{{\text{ahr}}}}^{{\text{t}}}\) is also replaced with the multiplication of the two binary variable \({\text{I}}_{{{\text{ahr}}}}^{{\text{t}}}\) and the integer variable\({{x^{\prime}}}_{{\text{a }}}^{{\text{t}}}\). We also need to have the following constraints for the required conditions.

$$ {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} \le {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} \;,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{t}} \in {\uptau }, $$
$$ {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} \ge {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} - {2}({1} - {\text{S}}_{{{\text{ah}}}}^{{\text{t}}} ),\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{t}} \in {\uptau }, $$
$$ {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} \le 2{\text{S}}_{{{\text{ah}}}}^{{\text{t}}} ,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{t}} \in {\uptau }, $$
$$ {\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} \le {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} ,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{r}} \in {\text{R}},{\text{t}} \in {\uptau }, $$
$$ {\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} \ge {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} - 2 \left( {{1} - {\text{I}}_{{{\text{ahr}}}}^{{\text{t}}} } \right),\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{r}} \in {\text{R}},{\text{t}} \in {\tau ,} $$
$$ {\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} \le 2{\text{I}}_{{{\text{ahr}}}}^{{\text{t}}} \;,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{r}} \in {\text{R}},{\text{t}} \in {\uptau }. $$

After replacing the auxiliary variables, Eq. 16 changes as follows:

$$ \begin{gathered} \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} {\text{A}}_{{{\text{aj}}}}^{{\text{t}}} {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} + \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} \mathop \sum \limits_{{{\text{h}} \in {\text{H}}}} {\text{A}}_{{{\text{ahj}}}}^{{\text{t}}} {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} \left( {\left| {{\text{A}}_{{{\text{aj}}}}^{{\text{t}}} {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} - 1} \right|} \right) \hfill \\ + \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} \mathop \sum \limits_{{{\text{h}} \in {\text{H}}}} \mathop \sum \limits_{{{\text{r}} \in {\text{R}}}} {\text{A}}_{{{\text{ahrj}}}}^{{\text{t}}} {\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} \left( {\left| {{\text{A}}_{{{\text{aj}}}}^{{\text{t}}} {{x^{\prime}}}_{{\text{a }}}^{{\text{t}}} - 1} \right|} \right)\left( {\left| {{\text{A}}_{{{\text{ahj}}}}^{{\text{t}}} {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} - 1} \right|} \right) \ge 2{\text{b}}_{{\text{j}}}^{{\text{t}}} - 2{\text{g}}_{{\text{j}}}^{{\text{t}}} \;,\forall {\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }. \hfill \\ \end{gathered} $$

In addition, the following auxiliary binary variables and constraints are introduced to linearize the absolute terms.

$$ \left| {{\text{A}}_{{{\text{aj}}}}^{{\text{t}}} {{x}}_{{\text{a }}}^{{\prime \text{t}}} - 1} \right| = {\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{{\prime \text{ t}}} \;,\forall {\text{a}} \in {\text{O}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ \left| {{\text{A}}_{{{\text{ahj}}}}^{{\text{t}}} {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} - 1} \right| = {\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} + {\overline{\text{v}}} _{{{\text{ahj}}}}^{\prime {\text{t}}} ,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\text{A}}_{{{\text{aj}}}}^{{\text{t}}} {{x}}_{{\text{a }}}^{\prime {\text{t}}} - 1 = {\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} - {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime {\text{ t}}} ,\forall {\text{a}} \in {\text{O}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} \le 1,\forall {\text{a}} \in {\text{O}},{\text{j}} \in {\text{D}},{\text{t}} \in {\tau ,} $$
$$ {\text{A}}_{{{\text{ahj}}}}^{{\text{t}}} {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} - 1 = {\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} - {\overline{\text{v}}} _{{{\text{ahj}}}}^{\prime{\text{t}}} ,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} + {\overline{\text{v}}} _{{{\text{ahj}}}}^{\prime{\text{t}}} \le 1,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }. $$

After replacing the auxiliary variables, the equation changes as follows:

$$ \begin{gathered} \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} {\text{A}}_{{{\text{aj}}}}^{{\text{t}}} {{x}}_{{\text{a }}}^{\prime{\text{t}}} + \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} \mathop \sum \limits_{{{\text{h}} \in {\text{H}}}} {\text{A}}_{{{\text{ahj}}}}^{{\text{t}}} ({\text{v}}_{{{\text{ah}}}}^{{\text{t}}} )\left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right) \hfill \\ + \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} \mathop \sum \limits_{{{\text{h}} \in {\text{H}}}} \mathop \sum \limits_{{{\text{r}} \in {\text{R}}}} {\text{A}}_{{{\text{ahrj}}}}^{{\text{t}}} \left( {{\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} } \right)\left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right)\left( {{\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} + {\overline{\text{v}}} _{{{\text{ahj}}}}^{\prime{\text{t}}} } \right) \ge 2{\text{b}}_{{\text{j}}}^{{\text{t}}} - 2{\text{g}}_{{\text{j}}}^{{\text{t}}} ,\forall {\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }. \hfill \\ \end{gathered} $$

In the following, the auxiliary integer variable \({{\varphi }}_{{{\text{ahj}}}}^{{\text{t}}}\) is defined to linearize the multiplication of integer variable \(({\text{v}}_{{{\text{ah}}}}^{{\text{t}}} )\) and binary phrase\( \left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right)\). The auxiliary binary variable \({\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}}\) is also used to linearize the multiplication of two terms \(\left( {{\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} + {\overline{\text{v}}} _{{{\text{ahj}}}}^{\prime{\text{t}}} } \right)\) and \(\left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right)\) with binary values.

$$ {{\varphi }}_{{{\text{ahj}}}}^{{\text{t}}} = ({\text{v}}_{{{\text{ah}}}}^{{\text{t}}} )\left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right),\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\tau ,} $$
$$ {\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} = \left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right)\left( {{\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} + {\overline{\text{v}}}_{{{\text{ahj}}}}^{\prime{\text{t}}} } \right),\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {{\varphi }}_{{{\text{ahj}}}}^{{\text{t}}} \le {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} \;,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {{\varphi }}_{{{\text{ahj}}}}^{{\text{t}}} \ge {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} - 2\left( {1 - \left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right)} \right),\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\tau ,} $$
$$ {{\varphi }}_{{{\text{ahj}}}}^{{\text{t}}} \le 2\left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right),\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} \le {\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} \;,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} \le {\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} + {\overline{\text{v}}} _{{{\text{ahj}}}}^{\prime{\text{t}}} ,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} \ge (\left( {{\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} + {\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} } \right) + \left( {{\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} + {\overline{\text{v}}}_{{{\text{ahj}}}}^{\prime{\text{t}}} } \right)) - 1,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }. $$

Now, the constraint changes as follows by replacing the auxiliary variables:

$$ \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} {\text{A}}_{{{\text{aj}}}}^{{\text{t}}} {{x}}_{{\text{a }}}^{\prime{\text{t}}} + \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} \mathop \sum \limits_{{{\text{h}} \in {\text{H}}}} {\text{A}}_{{{\text{ahj}}}}^{{\text{t}}} {{\varphi }}_{{{\text{ahj}}}}^{{\text{t}}} + \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} \mathop \sum \limits_{{{\text{h}} \in {\text{H}}}} \mathop \sum \limits_{{{\text{r}} \in {\text{R}}}} {\text{A}}_{{{\text{ahrj}}}}^{{\text{t}}} \left( {{\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} } \right)\left( {{\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} } \right) \ge 2{\text{b}}_{{\text{j}}}^{{\text{t}}} - 2{\text{g}}_{{\text{j}}}^{{\text{t}}} ,\forall {\text{j}} \in {\text{D}},\forall {\text{t}} \in {\uptau }{.} $$

The obtained constraint still have non-linear terms, multiplication integer variable \(\left( {{\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} } \right)\) and binary variable \(\left( {{\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} } \right)\). Given the auxiliary integer variable \({\overline{\text{w}}}_{{{\text{ahrj}}}}^{{\text{t}}}\), this equation linearized using the below equations.

$$ {\overline{\text{w}}}_{{{\text{ahrj}}}}^{{\text{t}}} = \left( {{\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} } \right)\left( {{\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} } \right),\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\overline{\text{w}}}_{{{\text{ahrj}}}}^{{\text{t}}} \le {\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} ,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{r}} \in {\text{R}},{\text{t}} \in {\uptau }, $$
$$ {\overline{\text{w}}}_{{{\text{ahrj}}}}^{{\text{t}}} \ge {\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} - 2\left( {1 - {\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} } \right),\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{r}} \in {\text{R}},{\text{t}} \in {\uptau },{ } $$
$$ {\overline{\text{w}}}_{{{\text{ahrj}}}}^{{\text{t}}} \le 2{\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} ,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{r}} \in {\text{R}},{\text{t}} \in {\uptau }. $$

Finally, the linear constraint obtained is as follows:

$$ \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} {\text{A}}_{{{\text{aj}}}}^{{\text{t}}} {{x}}_{{\text{a }}}^{\prime{\text{t}}} + \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} \mathop \sum \limits_{{{\text{h}} \in {\text{H}}}} {\text{A}}_{{{\text{ahj}}}}^{{\text{t}}} {{\varphi }}_{{{\text{ahj}}}}^{{\text{t}}} + \mathop \sum \limits_{{{\text{a}} \in {\text{O}}}} \mathop \sum \limits_{{{\text{h}} \in {\text{H}}}} \mathop \sum \limits_{{{\text{r}} \in {\text{R}}}} {\text{A}}_{{{\text{ahrj}}}}^{{\text{t}}} \left( {{\overline{\text{w}}}_{{{\text{ahrj}}}}^{{\text{t}}} } \right) \ge 2{\text{b}}_{{\text{j}}}^{{\text{t}}} - 2{\text{g}}_{{\text{j}}}^{{\text{t}}} ,\forall {\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }. $$

All auxiliary variables used in the linearization process are as below:

$$ {\overline{\text{x}}}_{{{\text{aj}}}}^{{\text{ t}}} ,{\overline{\text{x}}}_{{{\text{aj}}}}^{\prime{\text{ t}}} \in \left\{ {0,1} \right\},\forall {\text{a}} \in {\text{O}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\overline{\text{v}}}_{{{\text{ahj}}}}^{{\text{ t}}} , {\overline{\text{v}}} _{{{\text{ahj}}}}^{\prime{\text{t}}} \in \left\{ {0,1} \right\},\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\overline{{\varphi }}}_{{{\text{ahj}}}}^{{\text{ t}}} \in \left\{ {0,1} \right\},\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{t}} \in {\uptau }, $$
$$ {\text{v}}_{{{\text{ah}}}}^{{\text{t}}} ,{\text{w}}_{{{\text{ahr}}}}^{{\text{t}}} ,{\overline{\text{w}}}_{{{\text{ahrj}}}}^{{\text{t}}} \;{\text{integer}}\;,\forall {\text{a}} \in {\text{O}},{\text{h}} \in {\text{H}},{\text{j}} \in {\text{D}},{\text{r}} \in {\text{R}},{\text{t}} \in {\uptau }. $$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, A., Momeni, M. A multi-period maximal coverage model for locating simultaneous ground and air emergency medical services facilities. J Ambient Intell Human Comput (2020). https://doi.org/10.1007/s12652-020-02230-5

Download citation


  • Emergency medical services
  • Ground ambulance stations
  • Air ambulance stations
  • Transfer point location
  • Demand pattern change