Resolution for bounded-splitting jobs scheduling problem on a single machine in available time-windows

Abstract

This paper studies a single machine scheduling problem which machine-availability constraint is imposed. The jobs are splittable into sub-jobs and the size of each sub-job has a common lower bound. The objective aims to find an optimal scheduling solution that minimizes the maximum completion time for the whole set jobs. The scheduling problem was proved to be strongly NP-hard by a reduction from 3-Partition problem. In this paper, a general mixed-integer linear mathematical model is constructed based on some structurally optimal properties in the literature. Besides that we propose some effective heuristics concerned about assignment strategy such as assignment heuristic, heuristic based on shortest/longest processing time rules, heuristic based on max flow resolution, matching and assignment approach. In order to improve solution quality, we also propose to apply a combination between these proposed heuristics and metaheuristics such as tabu search and genetic algorithm. In addition, in the hope of achieving the better solutions in acceptable time, we introduce another approach called exact for subset-jobs matheuristic which is combined between mathematical programming and heuristic derived from single-attribute priority rule. Experimental results show the performance of proposed approximating approaches in comparing between them and the exact method based on the MILP model which is implemented by CPLEX solver. Among proposed effective algorithms, the matheuristic showed the superiority in terms of solution quality and execution time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. Allen D (2003) Getting things done, the art of stress-free productivity. Penguin Books, London, p 41

    Google Scholar 

  2. Baptiste P, Croce FD, Grosso A, Tkindt V (2010) Sequencing a single machine with due dates and deadlines: an ilp-based approach to solve very large instances. J Sched 13:39–47. https://doi.org/10.1007/s10951-008-0092-6

    MathSciNet  Article  MATH  Google Scholar 

  3. Brahimi N, Absi N, Dauzre-Prs S, Nordli A (2017) Single-item dynamic lot-sizing problems: an updated survey. Eur J Oper Res 263(3):838–863. https://doi.org/10.1016/j.ejor.2017.05.008

    MathSciNet  Article  MATH  Google Scholar 

  4. Brucker P (2007) Scheduling algorithms. Springer, Berlin

    Google Scholar 

  5. Ceschia S, Gaspero LD, Schaerf A (2017) Solving discrete lot-sizing and scheduling by simulated annealing and mixed integer programming. Comput Ind Eng 114:235–243. https://doi.org/10.1016/j.cie.2017.10.017

    Article  Google Scholar 

  6. Dosa G, Li R, Han X, Tuza Z (2013) Tight absolute bound for first fit decreasing bin-packing: Ffd(l) \(\le\) 11/9 opt(l) + 6/9. Theor Comput Sci 510:13–61. https://doi.org/10.1016/j.tcs.2013.09.007

    MathSciNet  Article  MATH  Google Scholar 

  7. Fan B, Li S, Zhou L, Zhang L (2011) Scheduling resumable deteriorating jobs on a single machine with non-availability constraints. Theor Comput Sci 412(45):275–280. https://doi.org/10.1016/j.tcs.2010.09.017

    MathSciNet  Article  MATH  Google Scholar 

  8. Fan B, Yang W, Zhang Z (2019) Solving the two-stage hybrid flow shop scheduling problem based on mutant firefly algorithm. J Ambient Intell Humaniz Comput 10:979–990. https://doi.org/10.1007/s12652-018-0903-3

    Article  Google Scholar 

  9. Fleischmann B, Meyr H (1997) The general lot-sizing and scheduling problem. Oper Res Spektrum 19:11–21. https://doi.org/10.1007/BF01539800

    Article  MATH  Google Scholar 

  10. Ford LR, Fulkerson DR (1956) Maximal flow through a network. Can J Math 8:399–404. https://doi.org/10.4153/CJM-1956-045-5

    MathSciNet  Article  MATH  Google Scholar 

  11. Gawiejnowicz S, Kononov A (2010) Complexity and approximability of scheduling resumable proportionally deteriorating jobs. Eur J Oper Res 200(1):305–308. https://doi.org/10.1016/j.ejor.2008.12.014

    Article  MATH  Google Scholar 

  12. Graham R, Lawler E, Lenstra J, Kan AR (1979) Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann Discrete Math 5:287–326. https://doi.org/10.1016/S0167-5060(08)70356-X

    MathSciNet  Article  MATH  Google Scholar 

  13. Hariri AMA, Potts CN (1994) Single machine scheduling with deadlines to minimize the weighted number of tardy jobs. Manag Sci 40(12):1579–1763. https://doi.org/10.1287/mnsc.40.12.1712

    Article  MATH  Google Scholar 

  14. Ji M, Cheng T (2010) Scheduling resumable simple linear deteriorating jobs on a single machine with an availability constraint to minimize makespan. Comput Ind Eng 59(4):794–798. https://doi.org/10.1016/j.cie.2010.08.005

    Article  Google Scholar 

  15. Liang X, Huang M, Ning T (2018) Flexible job shop scheduling based on improved hybrid immune algorithm. J Ambient Intell Humaniz Comput 9:165–171. https://doi.org/10.1007/s12652-016-0425-9

    Article  Google Scholar 

  16. Linn R, Zhang W (1999) Hybrid flow shop scheduling: a survey. Comput Ind Eng 37(12):57–61. https://doi.org/10.1016/S0360-8352(99)00023-6

    Article  Google Scholar 

  17. Liu C, Wang C, Zhang Z-H, Zheng L (2018) Scheduling with job-splitting considering learning and the vital-few law. Comput Oper Res 90:264–274. https://doi.org/10.1016/j.cor.2017.02.011

    MathSciNet  Article  MATH  Google Scholar 

  18. Liu M, Yao X, Li Y (2020) Hybrid whale optimization algorithm enhanced with lvy flight and differential evolution for job shop scheduling problems. Appl Soft Comput 87:105954. https://doi.org/10.1016/j.asoc.2019.105954

    Article  Google Scholar 

  19. Low C, Ji M, Hsu C-J, Su C-T (2010) Minimizing the makespan in a single machine scheduling problems with exible and periodic maintenance. Appl Math Model 34(2):334–342. https://doi.org/10.1016/j.apm.2009.04.014

    MathSciNet  Article  MATH  Google Scholar 

  20. Luo X, Qian Q, Fu YF (2020) Improved genetic algorithm for solving exible job shop scheduling problem. Proc Comput Sci 166:480–485. https://doi.org/10.1016/j.procs.2020.02.061

    Article  Google Scholar 

  21. Ma Y, Chu C, Zuo C (2010) A survey of scheduling with deterministic machine availability constraints. Comput Ind Eng 58(2):199–211. https://doi.org/10.1016/j.cie.2009.04.014

    Article  Google Scholar 

  22. Mejia G, Yuraszeck F (2020) A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open shop scheduling problems with travel/setup times. Eur J Oper Res 285(2):484–496. https://doi.org/10.1016/j.ejor.2020.02.010

    MathSciNet  Article  MATH  Google Scholar 

  23. Nguyen V, Bao H (2016) An efficient solution to the mixed shop scheduling problem using a modified genetic algorithm. Proc Comput Sci 95:475–482. https://doi.org/10.1016/j.procs.2016.09.324

    Article  Google Scholar 

  24. Nguyen VH, Tuong NH, Nguyen HP, Nguyen TH (2013) Single-machine scheduling with splitable jobs and availability constraints. REV J Electron Commun 3(12):21–27. https://doi.org/10.21553/rev-jec.51

    Article  Google Scholar 

  25. Nguyen VH, Tuong NH, Tran VH, Thoai N (2013) An milp-based makespan minimization model for single-machine scheduling problem with splitable jobs and availability constraints. In: 2013 international conference on computing, management and telecommunications (commantel). IEEE, Ho Chi Minh City, pp 397–400. https://doi.org/10.1109/ComManTel.2013.6482427

  26. Nikhil P, Phanindra KN, Chalapathi P, Ikram M, Akhil B (2020) Flexible job shop scheduling using software. Int J Eng Adv Technol 9(3):67–70. https://doi.org/10.35940/ijeat.B3430.029320

    Article  Google Scholar 

  27. Ning T, Huang M, Liang X, Jin H (2016) A novel dynamic scheduling strategy for solving exible job-shop problems. J Ambient Intell Humaniz Comput 7:721–729. https://doi.org/10.1007/s12652-016-0370-7

    Article  Google Scholar 

  28. Rolf B, Reggelin T, Nahhas A, Lang S, Mller M (2020) Assigning dispatching rules using a genetic algorithm to solve a hybrid flow shop scheduling problem. Proc Manuf 42:442449. https://doi.org/10.1016/j.promfg.2020.02.051

    Article  Google Scholar 

  29. Ruiz R, Vazquez-Rodriguez JA (2010) The hybrid ow shop scheduling problem. Eur J Oper Res 205(1):1–18. https://doi.org/10.1016/j.ejor.2009.09.024

    Article  MATH  Google Scholar 

  30. Sanlaville E, Schmidt G (1998) Machine scheduling with availability constraints. Acta Inform 35:795–811. https://doi.org/10.1007/s002360050143

    MathSciNet  Article  MATH  Google Scholar 

  31. Sels V, Gheysen N, Vanhoucke M (2012) A comparison of priority rules for the job shop scheduling problem under different flow time- and tardiness-related objective functions. Int J Prod Res 50(15):4255–4270. https://doi.org/10.1080/00207543.2011.611539

    Article  Google Scholar 

  32. Serafini P (1996) Scheduling jobs on several machines with job splitting property. Oper Res 44(4):531–659. https://doi.org/10.1287/opre.44.4.617

    Article  MATH  Google Scholar 

  33. Shakhlevich NV, Sotskov YN, Werner F (2000) Complexity of mixed shop scheduling problems: a survey. Eur J Oper Res 120(2):343–351. https://doi.org/10.1016/S0377-2217(99)00161-7

    MathSciNet  Article  MATH  Google Scholar 

  34. Son TH, Lang TV, Huynh-Tuong N (2018) Minimizing makespan of personal scheduling problem in available time-windows with split-min and setup-time constraints. J Comput Sci Cybern 34(2):97–111. https://doi.org/10.15625/1813-9663/34/2/12667

    Article  Google Scholar 

  35. Sourd F (2006) Dynasearch for the earliness-tardiness scheduling problem with release dates and setup constraints. Oper Res Lett 34(5):591–598. https://doi.org/10.1016/j.orl.2005.06.005

    MathSciNet  Article  MATH  Google Scholar 

  36. Swamidass PM (2000) Encyclopedia of produc tion and manufacturing management. Springer US, pp 527–528

  37. Ta QC, Billaut J-C, Bouquard J-L (2015) Heuristic algorithms to minimize the total tardiness in a ow shop production and outbound distribution scheduling problem. In: 2015 international conference on industrial engineering and systems management (iesm). IEEE, Seville, pp 128–134. https://doi.org/10.1109/IESM.2015.7380147

  38. Tahar DN, Yalaoui F, Chu C, Amodeo L (2006) A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times. Int J Prod Econ 99(12):63–73. https://doi.org/10.1016/j.ijpe.2004.12.007

    Article  Google Scholar 

  39. Tamssaouet K, Dauzre-Prs S, Yugma C (2018) Metaheuristics for the job-shop scheduling problem with machine availability constraints. Comput Ind Eng 125:1–8. https://doi.org/10.1016/j.cie.2018.08.008

    Article  Google Scholar 

  40. Tran DQ, Huynh-Tuong N, Ngoc GLH, Mai TL, Tran TL, Mai QT, Quan TT (2010) A personal scheduling system using genetic algorithm and simple natural language processing for usability. In: The 4th Mahasarakham international workshop on artificial intelligence (miwai’ 2010). Mahasarakham University, Mahasarakham, pp 23–33

  41. Wang W-L, Wang H-Y, Zhao Y-W, Zhang L-P, Xu X-L (2013) Parallel machine scheduling with splitting jobs by a hybrid differential evolution algorithm. Comput Oper Res 40(5):1196–1206. https://doi.org/10.1016/j.cor.2012.12.007

    MathSciNet  Article  MATH  Google Scholar 

  42. Wang C, Liu C, Hai Zhang Z, Zheng L (2016) Minimizing the total completion time for parallel machine scheduling with job splitting and learning. Comput Ind Eng 97:170–182. https://doi.org/10.1016/j.cie.2016.05.001

    Article  Google Scholar 

  43. Wang S-J, Tsai C-W, Chiang M-C (2018) A high performance search algorithm for job-shop scheduling problem. Proc Comput Sci 141:119–126. https://doi.org/10.1016/j.procs.2018.10.157

    Article  Google Scholar 

  44. Xing W, Zhang J (2000) Parallel machine scheduling with spliting jobs. Discrete Appl Math 103(13):259–269. https://doi.org/10.1016/S0166-218X(00)00176-1

    MathSciNet  Article  MATH  Google Scholar 

  45. Zhuang Z, Huang Z, Lu Z, Guo L, Cao Q, Qin W (2019) An improved artificial bee colony algorithm for solving open shop scheduling problem with two sequence-dependent setup times. Proc CIRP 83:563–568. https://doi.org/10.1016/j.procir.2019.04.119

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, under Grant Number BK-SDH-2020-8140009.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tran Van Lang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Son, T.H., Van Lang, T., Huynh-Tuong, N. et al. Resolution for bounded-splitting jobs scheduling problem on a single machine in available time-windows. J Ambient Intell Human Comput 12, 1179–1196 (2021). https://doi.org/10.1007/s12652-020-02162-0

Download citation

Keywords

  • Single machine scheduling
  • Available time-windows
  • Splitting-job
  • MILP model
  • Approximating algorithms