Gold price forecasting research based on an improved online extreme learning machine algorithm

Abstract

Accurate gold price prediction is highly essential for economic and currency markets. Thus, the intelligence prediction models need to be applied to price prediction. On the basis of long-term collected daily gold, the study proposes a novel genetic algorithm regularization online extreme learning machine (GA-ROSELM), to predict gold price data which collected from public websites. Akaike Information Criterion (AIC) is introduced to build the eight input combinations of variables based on the silver price of the previous day (Silver_D1), Standard & Poor. The 500 indexes (S&P_D1), the crude oil price (Crude_D1), and the gold price of the previous 3 days (Gold_D1, Gold_D2, Gold_D3). Eight optimal variable models are established, and the final input variables are determined according to the minimum AIC value. The proposed model (GA-ROSELM) solve the problem that OS-ELM model which is easy to generate singular matrices, meanwhile, experiments demonstrate this model performs better than ARIMA, SVM, BP, ELM and OS-ELM in the gold price prediction experiment. On the test set, the root means square error of this model (GA-ROSELM) prediction compared with five other models which decreased by 13.1%, 22.4%, 53.87%, 57.84% and 37.72% respectively. In summary, the results clearly confirm the effectiveness of the GA-ROSELM model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akaike H (1974) A new look at statistical model identification. IEEE Trans Autom Control AC 19(6):716–723. https://doi.org/10.1109/TAC.1974.1100705

    MathSciNet  Article  MATH  Google Scholar 

  2. Alexandre E, Cuadra L, Salcedosanz S (2015) Hybridizing extreme learning machines and genetic algorithms to select acoustic features in vehicle classification applications. Neurocomputing 152:58–68. https://doi.org/10.1016/j.neucom.2014.11.019

    Article  Google Scholar 

  3. Baur DG, Beckmann J, Czudaj R (2016) A melting pot—gold price forecasts under model and parameter uncertainty. Int Rev Financ Anal 48:282–291. https://doi.org/10.1016/j.irfa.2016.10.010

    Article  Google Scholar 

  4. Bialkowski J, Bohl MT, Stephan PM (2015) The gold price in times of crisis. Int Rev Financ Anal 41:329–339. https://doi.org/10.1016/j.irfa.2014.07.001

    Article  Google Scholar 

  5. Blose LE (2010) Gold prices, cost of carry, and expected inflation. J Econ Bus 62(1):35–47. https://doi.org/10.1016/j.jeconbus.2009.07.001

    Article  Google Scholar 

  6. Chandar SK (2019) Fusion model of wavelet transform and adaptive neuro fuzzy inference system for stock market prediction. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-019-01224-2

    Article  Google Scholar 

  7. Chen Y, Song S, Li S (2018) Domain space transfer extreme learning machine for domain adaptation. IEEE Trans Cybern 49(5):1909–1922. https://doi.org/10.1109/TCYB.2018.2816981

    Article  Google Scholar 

  8. Chen S, Wang J, Zhang H (2019) A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting. Technol Forecast Soc Chang 146:41–54. https://doi.org/10.1016/j.techfore.2019.05.015

    Article  Google Scholar 

  9. Gao T, Li X, Chai Y (2016) Deep learning with stock indicators and two-dimensional principal component analysis for closing price prediction system. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE, 166–169. https://doi.org/10.1109/ICSESS.2016.7883040

  10. Guangbin H, Qinyu Z, Cheekheong S (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  11. Guihao P, Nailian H, Huanzhong L (2010) Empirical analysis of gold price based on ARMA-GARCH model. Gold 31(1):5

    Google Scholar 

  12. Hou M, Liu T, Yang Y (2017) A new hybrid constructive neural network method for impacting and its application on tungsten price prediction. Appl Intell 47(1):28–43. https://doi.org/10.1007/s10489-016-0882-z

    Article  Google Scholar 

  13. Huang L, Wang J (2018) Global crude oil price prediction and synchronization based accuracy evaluation using random wavelet neural network. Energy. https://doi.org/10.1016/j.apenergy.2015.09.087

    Article  Google Scholar 

  14. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892. https://doi.org/10.1109/TNN.2006.875977

    Article  Google Scholar 

  15. Huang GB, Zhou H, Ding X (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42(2):513–529. https://doi.org/10.1109/tsmcb.2011.2168604

    Article  Google Scholar 

  16. Huang Y, Tian K, Wu A (2019) Feature fusion methods research based on deep belief networks for speech emotion recognition under noise condition. J Ambient Intell Humaniz Comput 10(5):1787–1798. https://doi.org/10.1007/s12652-017-0644-8

    Article  Google Scholar 

  17. Huynh HT, Won Y (2011) Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks. Pattern Recogn Lett 32(14):1930–1935. https://doi.org/10.1016/j.patrec.2011.07.016

    Article  Google Scholar 

  18. Iosifidis A, Tefas A, Pitas I (2015) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311–324. https://doi.org/10.1109/TCYB.2015.2401973

    Article  Google Scholar 

  19. Keles D, Scelle J, Paraschiv F (2016) Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Appl Energy 162(162):218–230. https://doi.org/10.1016/j.apenergy.2015.09.087

    Article  Google Scholar 

  20. Kim J, Moon N (2019) BiLSTM model based on multivariate time series data in multiple field for forecasting trading area. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-019-01398-9

    Article  Google Scholar 

  21. Kristjanpoller W, Minutolo MC (2015) Gold price volatility: a forecasting approach using the artificial neural network—GARCH model. Expert Syst Appl 42(20):7245–7251. https://doi.org/10.1016/j.eswa.2015.04.058

    Article  Google Scholar 

  22. Li Y, Xie W, Li H (2017) Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recogn 63:371–383. https://doi.org/10.1016/j.patcog.2016.10.019

    Article  Google Scholar 

  23. Mustaffa Z, Sulaiman MH, Kahar MNM (2015) Training LSSVM with GWO for price forecasting[C]. 2015 International Conference on Informatics, Electronics & Vision (ICIEV). IEEE, 1–6. https://doi.org/10.1109/iciev.2015.7334054

  24. Nanning L, Huang GB, Saratchandran P (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423. https://doi.org/10.1109/TNN.2006.880583

    Article  Google Scholar 

  25. Pan F, Zhao HB (2013) Online sequential extreme learning machine based multilayer perception with output self feedback for time series prediction. J Shanghai Jiaotong Univ 18(3):366–375. https://doi.org/10.1007/s12204-013-1407-0

    Article  Google Scholar 

  26. Paroissien E (2019) Forecasting bulk prices of Bordeaux wines using leading indicators. Int J Forecast. https://doi.org/10.1016/j.ijforecast.2019.04.021

    Article  Google Scholar 

  27. Salcedo-Sanz S, Camps-Valls G, Perez-Cruz F (2004) Enhancing genetic feature selection through restricted search and Walsh analysis. IEEE Trans Syst Man Cybern Part C Appl Rev 34(4):398–406. https://doi.org/10.1109/TSMCC.2004.833301

    Article  Google Scholar 

  28. Shafiee S, Topal E (2010) An overview of global gold market and gold price forecasting. Resour Policy 35(3):178–189. https://doi.org/10.1016/j.resourpol.2010.05.004

    Article  Google Scholar 

  29. Sivalingam KC, Mahendran S, Natarajan S (2016) Forecasting gold prices based on extreme learning machine. Int J Comput Commun Control 11(3):372. https://doi.org/10.1002/fut.3990130605

    Article  Google Scholar 

  30. Stock JH, Watson MW (1988) A probability model of the coincident economic indicators. New Approach Forecast Rec. https://doi.org/10.3386/w2772

    Article  Google Scholar 

  31. Wang J, Athanasopoulos G, Hyndman RJ (2018) Crude oil price forecasting based on internet concern using an extreme learning machine. Int J Forecast 34(4):665–677. https://doi.org/10.1016/j.ijforecast.2018.03.009

    Article  Google Scholar 

  32. Xu J (2017) Empirical analysis of gold futures price based on ARMA model. Ind Econ Rev 4:3

    Google Scholar 

  33. Xueying Z, Le Z, Ying S (2017) Speech emotion recognition based on decision fusion of KELM. Appl Electron Tech 8:32

    Google Scholar 

  34. Yaseen ZM, Deo RC, Hilal A (2018) Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw 115:112–125. https://doi.org/10.1016/j.advengsoft.2017.09.004

    Article  Google Scholar 

  35. Ye Y, Zhang J, Huang Z (2019) A new information fusion method of forecasting. J Ambient Intell Humaniz Comput 10(1):307–314. https://doi.org/10.1007/s12652-017-0666-2

    Article  Google Scholar 

  36. Yu Y, Zhou H, Fu J (2018) Research on agricultural product price forecasting model based on improved BP neural network. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-1008-8

    Article  Google Scholar 

  37. Zhang F, Liao Z (2014) Gold price forecasting based on RBF neural network and hybrid fuzzy clustering algorithm. Lect Notes Electr Eng 241:73–84. https://doi.org/10.1007/978-3-642-40078-06

    Article  Google Scholar 

  38. Zhang L, Luh PB (2005) Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method. IEEE Trans Power Syst. https://doi.org/10.1109/tpwrs.2004.840416

    Article  Google Scholar 

  39. Zhong W, Kong R, Chen G (2019) Gold prices fluctuation of co-movement forecast between China and Russia. Resour Policy 62:218–230. https://doi.org/10.1016/j.resourpol.2019.03.012

    Article  Google Scholar 

  40. Zhou Z, Chen J, Zhu Z (2018) Regularization incremental extreme learning machine with random reduced kernel for regression. Neurocomputing 321:72–81. https://doi.org/10.1016/j.neucom.2018.08.082

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61375063, 61773404, 11301549 and 11271378), Key Program of The National Social Science Fund of China under Grants 16ATJ003. And in part by the Institute of engineering modeling and scientific computing, Central South University 2019 “Tian’an” Cup College Students’ innovation and Entrepreneurship Project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muzhou Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weng, F., Chen, Y., Wang, Z. et al. Gold price forecasting research based on an improved online extreme learning machine algorithm. J Ambient Intell Human Comput 11, 4101–4111 (2020). https://doi.org/10.1007/s12652-020-01682-z

Download citation

Keywords

  • Genetic algorithm
  • AIC criterion
  • Online learning machine
  • Gold price forecast