Advertisement

Smart routing for municipal solid waste collection: a heuristic approach

  • Amal Louati
  • Le Hoang Son
  • Habib Chabchoub
Original Research

Abstract

Municipal solid waste (MSW) is considered as one of the primary factors that contribute greatly to the rising of climate change and global warming affecting sustainable development in many different ways. It is indeed necessary to investigate an efficient computerized method for the optimization of MSW collection that minimizes the environmental and other factors according to a given waste collection scenario. In this paper, we propose a heuristic-based smart routing algorithm for MSW collection and implement it by Python scripts in ArcGIS to calculate optimal solutions of the model including routes and total travelling distances and operational time of vehicles. The algorithm will be validated on a case study of Sfax city which is the second largest and among the most polluted cities in Tunisia. A novel optimization model for the MSW collection in Sfax is designed and given to the algorithm for calculation. The achieved results are then compared with those of the current real scenario as well as evaluated by a multi-criteria decision aid method namely PROMETHEE in terms of environment and economic criteria.

Keywords

ArcGIS Dijkstra Municipal Solid Waste Collection Optimization models Sfax city Vehicle Routing Problem 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Avila-Torres P, Caballero R, Litvinchev I, Lopez-Irarragorri F, Vasant P (2017). The urban transport planning with uncertainty in demand and travel time: a comparison of two defuzzification methods. J Ambient Intell Humaniz Comput 1–14Google Scholar
  2. Behzadian M, Kazemzadeh RB, Albadvi A, Aghdasi M (2010) PROMETHEE: A comprehensive literature review on methodologies and applications. Eur J Oper Res 200(1):198–215.  https://doi.org/10.1016/j.ejor.2009.01.021 CrossRefzbMATHGoogle Scholar
  3. Bonomo F, Durán G, Larumbe F, Marenco J (2012) A method for optimizing waste collection using mathematical programming: a Buenos aires case study. Waste Manag Res 30:311–324.  https://doi.org/10.1177/0734242X11402870 CrossRefGoogle Scholar
  4. Brans JP, Vincke P (1985). A preference ranking organisation method: (The PROMETHEE Method for Multiple Criteria Decision-Making) A Preference Ranking Organisation MethoDt (The PROMETHEE method for multiple criteria decision-making). Source: Management Science MANAGEMENT SCIENCE, 31(6), 647–656. http://www.jstor.org/stable/2631441. Accessed 17 June 2016
  5. Chang NB, Chang YH, Chen HW (2009) Fair fund distribution for a municipal incinerator using GIS-based fuzzy analytic hierarchy process. J Environ Manage 90(1):441–454.  https://doi.org/10.1016/j.jenvman.2007.11.003 CrossRefGoogle Scholar
  6. Douaud A, Technique AD (2010). Economie de carburant CO 2 et EnergieGoogle Scholar
  7. ESRI. (2006). ArcGIS network analyst. GIS-Bus (1–2): 42–45Google Scholar
  8. Gallardo A, Carlos M, Peris M, Colomer FJ (2015) Methodology to design a municipal solid waste pre-collection system. A case study. Waste Manag 36:1–11.  https://doi.org/10.1016/j.wasman.2014.11.008 CrossRefGoogle Scholar
  9. Han H (2015). Waste collection vehicle routing problem: a literature. Review 27(4), 1–12.  https://doi.org/10.7307/ptt.v27i4.1616 Google Scholar
  10. Ing HK, Analytique C, Service I, Atmosph P (2007). Surveillance de la Qualité de l’ Air en Tunisie Ingénieur Principal en Chimie Analytique Réseau National de Surveillance de la Qualité de l’ AirGoogle Scholar
  11. Karadimas NV, Kolokathi M, Defteraiou G, Loumos V (2007) Ant colony system vs ArcGIS network analyst: the case of municipal solid waste collection. 5th WSEAS international conference on environment, ecosystems and development, 128–134Google Scholar
  12. Khan D, Samadder SR (2014) Municipal Solid Waste Management using Geographical Information System aided methods: a mini review. Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA 32(11):1049–1062.  https://doi.org/10.1177/0734242X14554644 CrossRefGoogle Scholar
  13. Malakahmad A, Bakri PM, Mokhtar MRM, Khalil N (2014) Solid waste collection routes optimization via GIS techniques in Ipoh City, Malaysia. Proc Eng 77:20–27.  https://doi.org/10.1016/j.proeng.2014.07.023 CrossRefGoogle Scholar
  14. Mareschal B (2013). Visual PROMETHEE manual, pp 1–192. http://www.promethee-gaia.net/files/VPManual.pdf. Accessed on 16 May, 2016
  15. Moisseeva N, Ainslie B, Vingarzan R, Steyn D (2016). Modeling and chemical analysis used as tools to understand decade-long trends of ozone air pollution in the lower fraser valley, British Columbia, Canada. Air Pollution Modeling and its Application XXIV (pp. 277–281). Springer.  https://doi.org/10.1007/978-3-319-24478-5_45
  16. Ngan TT, Tuan TM, Minh NH, Dey N (2016) Decision making based on fuzzy aggregation operators for medical diagnosis from dental X-ray images. J Med Syst 40(12):280CrossRefGoogle Scholar
  17. Phong PH, Son LH (2017) Linguistic vector similarity measures and applications to linguistic information classification. Int J Intell Syst 32(1):67–81CrossRefGoogle Scholar
  18. Sanjeevi V, Shahabudeen P (2015). Optimal routing for efficient municipal solid waste transportation by using ArcGIS application in Chennai, India.  https://doi.org/10.1177/0734242X15607430
  19. Sanjeevi V, Shahabudeen P (2016) Optimal routing for efficient municipal solid waste transportation by using ArcGIS application in Chennai, India. Waste Manag Res 34:11–21.  https://doi.org/10.1177/0734242X15607430 CrossRefGoogle Scholar
  20. Santos L, Coutinho-Rodrigues J, Antunes CH (2011) A web spatial decision support system for vehicle routing using Google Maps. Decis Support Syst 51(1):1–9.  https://doi.org/10.1016/j.dss.2010.11.008 CrossRefGoogle Scholar
  21. Soltani A, Hewage K, Reza B, Sadiq R (2015) Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: a review. Waste Manag 35:318–328.  https://doi.org/10.1016/j.wasman.2014.09.010 CrossRefGoogle Scholar
  22. Son LH (2014) Optimizing municipal solid waste collection using chaotic particle swarm optimization in GIS based environments: a case study at Danang city, Vietnam. Expert Syst Appl 41(18):8062–8074.  https://doi.org/10.1016/j.eswa.2014.07.020 CrossRefGoogle Scholar
  23. Son LH, Louati A (2016) Modeling municipal solid waste collection: A generalized vehicle routing model with multiple transfer stations, gather sites and inhomogeneous vehicles in time windows. Waste Manag.  https://doi.org/10.1016/j.wasman.2016.03.041 Google Scholar
  24. Son LH, Phong PH (2016) On the performance evaluation of intuitionistic vector similarity measures for medical diagnosis 1. J Intell Fuzzy Syst 31(3):1597–1608CrossRefzbMATHGoogle Scholar
  25. Son LH, Thong PH, Linh ND, Cuong TC, Hoa ND (2011) Developing JSG framework and applications in COMGIS project. Int J Comput Inform Syst Ind Manag Appl (IJCISIM) 3:108–118Google Scholar
  26. Son LH, Viet P, Hai P (2017) Picture inference system: a new fuzzy inference system on picture fuzzy set. Appl Intell 46(3):652–669CrossRefGoogle Scholar
  27. Syed WSH, Jabbar A, Shaikh MU, Janssens D, Galland S (2017). A new traffic route analyzer for commuter’s guidance in developing countries: application study in Islamabad, Pakistan. J Ambient Intell Humaniz Comput, 1–10Google Scholar
  28. Tavares G, Zsigraiova Z, Semiao V, Carvalho MG (2009) Optimisation of MSW collection routes for minimum fuel consumption using 3D GIS modelling. Waste Manag 29(3):1176–1185.  https://doi.org/10.1016/j.wasman.2008.07.013 CrossRefGoogle Scholar
  29. Thanh ND, Ali M, Son LH (2017) A novel clustering algorithm in a neutrosophic recommender system for medical diagnosis. Cognit Comput 9(4):526–544CrossRefGoogle Scholar
  30. Thong PH, Son LH (2017) Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences. Appl Intell 46(1):1–15CrossRefGoogle Scholar
  31. Vinodh S, Jeya Girubha R (2011) PROMETHEE based sustainable concept selection. Appl Math Model 36(11):5301–5308.  https://doi.org/10.1016/j.apm.2011.12.030 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Waste M (2014). Country profile on the solid waste management situation in TUNISIA. http://www.sweep-net.org/sites/default/files/TUNISIA%20PROFIL%20ANG(2P).pdf
  33. Zhang L, Shaffer B, Brown T, Samuelsen GS (2015) The optimization of DC fast charging deployment in California. Appl Energy 157:111–122.  https://doi.org/10.1016/j.apenergy.2015.07.057 CrossRefGoogle Scholar
  34. Zsigraiova Z, Semiao V, Beijoco F (2013) Operation costs and pollutant emissions reduction by definition of new collection scheduling and optimization of MSW collection routes using GIS. The case study of Barreiro, Portugal. Waste Manag 33(4):793–806.  https://doi.org/10.1016/j.wasman.2012.11.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Unit LOGIQ, Sfax UniversitySfaxTunisia
  2. 2.VNU University of Science, Vietnam National UniversityHanoiVietnam
  3. 3.Management and MIS Department, College of BusinessAl Ain University of Science and TechnologyAbu DhabiUAE

Personalised recommendations