Design of efficient embedded system for road sign recognition

  • Wajdi Farhat
  • Souhir Sghaier
  • Hassene Faiedh
  • Chokri Souani
Original Research
  • 54 Downloads

Abstract

Automatic traffic sign recognition enhances driver interactivity while driving. It improves the vigilance of the driver by alarming-him/her of signs that he/she may not perceive. In this paper, an embedded real-time system for automatic traffic sign recognition is proposed. The segmentation task of an acquired scene is processed in the HSV color space. The recognition process is performed by using the Oriented fast-and-Rotated Brief features. The developed algorithm is implemented on a ZedBoard hardware platform. The detection rate reaches the value of 97.39%. The recognition rate is equal to 95.53%.

Keywords

Advanced driver assistance system Traffic sign recognition Embedded system Real-time Intelligent transport system ZedBoard 

References

  1. Ahonen T, Matas J, He C, Pietikäinen M (2009) Rotation invariant image description with local binary pattern histogram fourier features. In: Image analysis. Springer, Berlin, pp 61–70CrossRefGoogle Scholar
  2. Alefs B, Eschemann G, Ramoser H, Beleznai C (2007) Road sign detection from edge orientation histograms. 2007 IEEE intelligent vehicles symposium, pp 993–998Google Scholar
  3. Alsibai MH, Hirai Y (2010) Real-time recognition of blue traffic signs designating directions. Int J Intell Transp Syst Res 8:96–105.  https://doi.org/10.1007/s13177-010-0010-0Google Scholar
  4. Anders J, Mefenza M, Bobda C, Yonga F, Aklah Z, Gunn K (2016) A hardware/software prototyping system for driving assistance investigations. J Real-Time Image Proc 11(3):559–569CrossRefGoogle Scholar
  5. Chen Z, Huang X, Ni Z, He H (2014) A GPU-based real-time traffic sign detection and recognition system. 2014 IEEE symposium on computational intelligence in vehicles and transportation systems (CIVTS), pp 1–5Google Scholar
  6. Escalera A de la, Moreno LE, Salichs MA, Armingol JM (1997) Road traffic sign detection and classification. IEEE Trans Ind Electron 44:848–859.  https://doi.org/10.1109/41.649946CrossRefGoogle Scholar
  7. Farhat W, Faiedh H, Souani C, Besbes K (2015a) Novel approach for real time detection and classification based on template matching in video. In: 2015 World Congress on Information Technology and Computer Applications (WCITCA). pp 1–7Google Scholar
  8. Farhat W, Faiedh H, Souani C, Besbes K (2015b) Effect of color spaces on video segmentation performances. In: 2015 World Symposium on Computer Networks and Information Security (WSCNIS). pp 1–5Google Scholar
  9. Farhat W, Faiedh H, Souani C, Besbes K (2017) Real-time embedded system for traffic sign recognition based on ZedBoard. J Real Time Image Process.  https://doi.org/10.1007/s11554-017-0689-0Google Scholar
  10. Fleyeh H, Davami E (2011) Eigen-based traffic sign recognition. IET Intel Transport Syst 5(3):190CrossRefGoogle Scholar
  11. Gao XW, Podladchikova L, Shaposhnikov D, Hong K, Shevtsova N (2006) Recognition of traffic signs based on their colour and shape features extracted using human vision models. J Vis Commun Image Represent 17(4):675–685CrossRefGoogle Scholar
  12. Gavrila DM (1998) Multi-feature hierarchical template matching using distance transforms. In: Proceedings. Fourteenth international conference on pattern recognition (Cat. No.98EX170), vol. 1. pp 439–444Google Scholar
  13. Grana C, Borghesani D, Manfredi M, Cucchiara R (2013) A fast approach for integrating ORB descriptors in the bag of words model, Proc. SPIE 8667, Multimedia Content and Mobile Devices, 866709Google Scholar
  14. Greenhalgh J, Mirmehdi M (2012) Real-time detection and recognition of road traffic signs. IEEE Trans Intell Transp Syst 13:1498–1506.  https://doi.org/10.1109/TITS.2012.2208909CrossRefGoogle Scholar
  15. Gomez-Moreno H, Maldonado-Bascon S, Gil-Jimenez P, Lafuente-Arroyo S (2010) Goal evaluation of segmentation algorithms for traffic sign recognition. IEEE Trans Intell Transp Syst 11:917–930.  https://doi.org/10.1109/TITS.2010.2054084CrossRefGoogle Scholar
  16. Gonzalez Á, Garrido MÁ, Llorca DF et al (2011) Automatic traffic signs and panels inspection system using computer vision. IEEE Trans Intell Transp Syst 12:485–499.  https://doi.org/10.1109/TITS.2010.2098029CrossRefGoogle Scholar
  17. Gudigar A, Chokkadi S, U R (2016) A review on automatic detection and recognition of traffic sign. Multimedia Tools Appl 75 (1):333–364CrossRefGoogle Scholar
  18. Gudigar A, Jagadale BN, P.k M, U R (2012) Kernel based automatic traffic sign detection and recognition using SVM. In: Mathew J, Patra P, Pradhan DK, Kuttyamma AJ (eds) Eco-friendly Computing and Communication Systems. Springer, Berlin, Heidelberg, pp 153–161Google Scholar
  19. Han Y, Oruklu E (2014) Real-time traffic sign recognition based on Zynq FPGA and ARM SoCs. In: IEEE International Conference on Electro/Information Technology, pp 373–376Google Scholar
  20. Hamdi S, Faiedh H, Souani C, Besbes K (2016) A lighting independent vision based system for driver assistance. In: 2016 11th International Design Test Symposium (IDT), pp 328–333Google Scholar
  21. Hmida R, Abdelali AB, Mtibaa A (2016) Hardware implementation and validation of a traffic road sign detection and identification system. J Real Time Image Process.  https://doi.org/10.1007/s11554-016-0579-xGoogle Scholar
  22. Hsieh JW, Chen LC, Chen DY (2014) Symmetrical SURF and Its applications to vehicle detection and vehicle make and model recognition. IEEE Trans Intell Transp Syst 15:6–20.  https://doi.org/10.1109/TITS.2013.2294646CrossRefGoogle Scholar
  23. Irmak H, Real time traffic sign recognition system on FPGA., 2010Google Scholar
  24. Kuo WJ, Lin CC (2007) Two-stage road sign detection and recognition. In: 2007 IEEE international conference on multimedia and expo, pp 1427–1430Google Scholar
  25. Lafuente-Arroyo S, Salcedo-Sanz S, Maldonado-Bascón S et al (2010) A decision support system for the automatic management of keep-clear signs based on support vector machines and geographic information systems. Expert Syst Appl 37:767–773.  https://doi.org/10.1016/j.eswa.2009.05.102CrossRefGoogle Scholar
  26. Larsson F, Felsberg M (2011) Using fourier descriptors and spatial models for traffic sign recognition. In: Heyden A, Kahl F (eds) Image analysis. Springer, Berlin Heidelberg, 238–249CrossRefGoogle Scholar
  27. Lillo-Castellano JM, Mora-Jimenez I, Figuera-Pozuelo C, Rojo-Alvarez JL (2015) Traffic sign segmentation and classification using statistical learning methods. Neurocomputing 153:286–299.  https://doi.org/10.1016/j.neucom.2014.11.026CrossRefGoogle Scholar
  28. Loy G, Zelinsky A (2003) Fast radial symmetry for detecting points of interest. IEEE Trans Pattern Anal Mach Intell 25:959–973.  https://doi.org/10.1109/TPAMI.2003.1217601CrossRefMATHGoogle Scholar
  29. Maldonado-Bascon S, Lafuente-Arroyo S, Gil-Jimenez P et al (2007) Road-sign detection and recognition based on support vector machines. IEEE Trans Intell Transp Syst 8:264–278.  https://doi.org/10.1109/TITS.2007.895311CrossRefGoogle Scholar
  30. Malinowski A, Yu H (2011) Comparison of embedded system design for industrial applications. IEEE Trans Ind Inform 7:244–254.  https://doi.org/10.1109/TII.2011.2124466CrossRefGoogle Scholar
  31. Mathias M, Timofte R, Benenson R, Gool LV (2013) Traffic sign recognition #x2014; How far are we from the solution? In: The 2013 international joint conference on neural networks (IJCNN), pp 1–8Google Scholar
  32. Miura J, Kanda T, Shirai Y (2000) An active vision system for real-time traffic sign recognition. In: ITSC2000. 2000 IEEE intelligent transportation systems. Proceedings (Cat. No.00TH8493), pp 52–57Google Scholar
  33. Mogelmose A, Trivedi MM, Moeslund TB (2012) Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey. IEEE Trans Intell Transp Syst 13:1484–1497.  https://doi.org/10.1109/TITS.2012.2209421CrossRefGoogle Scholar
  34. Moutarde F, Bargeton A, Herbin A, Chanussot L (2007) Robust on-vehicle real-time visual detection of American and European speed limit signs, with a modular traffic signs recognition system. 2007 IEEE intelligent vehicles symposium, pp 1122–1126Google Scholar
  35. Par K, Tosun O (2012) Real-time traffic sign recognition with map fusion on multicore/many-core architectures. Acta Polytech Hung 9(2):231–250Google Scholar
  36. Park J, Kwon J, Oh J et al (2011) A 92 mW real-time traffic sign recognition system with robust light and dark adaptation. In: IEEE Asian solid-state circuits conference 2011, pp 397–400Google Scholar
  37. Park J-G, Kim K-J (2013) Design of a visual perception model with edge-adaptive Gabor filter and support vector machine for traffic sign detection. Expert Syst Appl 40(9):3679–3687CrossRefGoogle Scholar
  38. Paulo CF, Correia PL (2007) Automatic detection and classification of traffic signs. In: Eighth international workshop on image analysis for multimedia interactive services, 2007. WIAMIS’07, pp 11–11Google Scholar
  39. Phalguni, Ganapathi K, Madumbu V et al (2013) Design and implementation of an automatic traffic sign recognition system on TI OMAP-L138. In: 2013 IEEE international conference on industrial technology (ICIT), pp 1104–1109Google Scholar
  40. Ren F, Huang J, Jiang R, Klette R (2009) General traffic sign recognition by feature matching. In: 2009 24th international conference image and vision computing New Zealand, pp 409–414Google Scholar
  41. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the 2011 international conference on computer vision. IEEE Computer Society, Washington, DC, pp 2564–2571Google Scholar
  42. Ruta A, Li Y, Liu X (2010) Real-time traffic sign recognition from video by class-specific discriminative features. Pattern Recognit 43:416–430.  https://doi.org/10.1016/j.patcog.2009.05.018CrossRefMATHGoogle Scholar
  43. Salti S, Petrelli A, Tombari F et al (2015) Traffic sign detection via interest region extraction. Pattern Recognit 48:1039–1049.  https://doi.org/10.1016/j.patcog.2014.05.017CrossRefGoogle Scholar
  44. Schwiegelshohn F, Gierke L, Hübner M (2015) FPGA based traffic sign detection for automotive camera systems. In: 2015 10th international symposium on reconfigurable communication-centric systems-on-chip (ReCoSoC), pp 1–6Google Scholar
  45. Souani C, Faiedh H, Besbes K (2014) Efficient algorithm for automatic road sign recognition and its hardware implementation. J Real Time Image Process 9:79–93.  https://doi.org/10.1007/s11554-013-0348-zCrossRefGoogle Scholar
  46. Stallkamp J, Schlipsing M, Salmen J, Igel C (2011) The German traffic sign recognition benchmark: a multi-class classification competition. The 2011 international joint conference on neural networks (IJCNN), pp 1453–1460Google Scholar
  47. Stallkamp J, Schlipsing M, Salmen J, Igel C (2012) Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Netw 32:323–332.  https://doi.org/10.1016/j.neunet.2012.02.016CrossRefGoogle Scholar
  48. Timofte R, Zimmermann K, Van Gool L (2014) Multi-view traffic sign detection, recognition, and 3D localisation. Mach Vis Appl 25:633–647.  https://doi.org/10.1007/s00138-011-0391-3CrossRefGoogle Scholar
  49. Turturici M, Saponara S, Fanucci L, Franchi E (2013) Low-power DSP system for real-time correction of fish-eye cameras in automotive driver assistance applications. J Real Time Image Process 9:463–478.  https://doi.org/10.1007/s11554-013-0330-9CrossRefGoogle Scholar
  50. Waite S, Oruklu E (2013) FPGA-based traffic sign recognition for advanced driver assistance systems. J Transp Technol 03:1–16.  https://doi.org/10.4236/jtts.2013.31001CrossRefGoogle Scholar
  51. Zaklouta F, Stanciulescu B (2011) Warning traffic sign recognition using a HOG-based K-d tree. 2011 IEEE intelligent vehicles symposium (IV), pp 1019–1024Google Scholar
  52. Zaklouta F, Stanciulescu B (2014) Real-time traffic sign recognition in three stages. Robot Auton Syst 62:16–24.  https://doi.org/10.1016/j.robot.2012.07.019CrossRefGoogle Scholar
  53. Zhao J, Zhu S, Huang X (2013) Real-time traffic sign detection using SURF features on FPGA. 2013 IEEE high performance extreme computing conference (HPEC),pp 1–6Google Scholar
  54. Zhou Y, Chen Z, Huang X (2015) A pipeline architecture for traffic sign classification on an FPGA. In: 2015 IEEE international symposium on circuits and systems (ISCAS), pp 950–953Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wajdi Farhat
    • 1
  • Souhir Sghaier
    • 2
  • Hassene Faiedh
    • 3
  • Chokri Souani
    • 3
  1. 1.National School of EngineersSousse UniversitySousseTunisia
  2. 2.Faculty of SciencesMonastir UniversityMonastirTunisia
  3. 3.Higher Institute of Applied Sciences and TechnologySousse UniversitySousseTunisia

Personalised recommendations