Skip to main content
Log in

An intelligent lung cancer diagnosis system using cuckoo search optimization and support vector machine classifier

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

One of the leading causes of cancer death for both men and women is the lung cancer. The best way to improve the patient’s chances for survival is the early detection of potentially cancerous cells. But, the conventional systems fails to segment the cancerous cells of various types namely, well-circumscribed, juxta-pleural, juxta-vascular and pleural-tail at its early stage (i.e., less than 3 mm) that leads to less classification accuracy. It is also noted that none of the existing systems achieved accuracy more than 98%. In this paper, we propose an optimal diagnosis system not only for early detection of lung cancer nodules and also to improve the accuracy in Fog computing environment. The Fog environment is used for storage of the high volume CT scanned images to achieve high privacy, low latency and mobility support. In our approach, for the accurate segmentation of Region of Interest (ROI), the hybrid technique namely Fuzzy C-Means (FCM) and region growing segmentation algorithms are used. Then, the important features of the nodule of interest such as geometric, texture and statistical or intensity features are extracted. From the above extracted features, the optimal features used for the classification of lung cancer are identified using the Cuckoo search optimization algorithm. Finally, the SVM classifier is trained using these optimal features, which in turn helps us to classify the lung cancer as either of type benign or malignant. The accuracy of the proposed system is tested using Early Lung Cancer Action Program (ELCAP) public database CT lung images. The total sensitivity and specificity attained in our system for the above said database are 98.13 and 98.79% respectively. This results in a mean accuracy of 98.51% for training and testing in a sample of 103 nodules occurring in 50 exams. The rate of false positives per exam was 0.109. Also, a high receiver operating characteristic (ROC) of 0.9962 has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aarthy KP, Ragupathy US (2012) Detection of lung nodule using multiscale wavelets and support vector machine. Int J Soft Comput Eng (IJSCE) 2(3):32–36

    Google Scholar 

  • Armato III SG, Senskovie WF (2004) Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis. Acad Radiol 11:1011–1021

    Article  Google Scholar 

  • Armato SG, Gieger ML, Moran CJ, Blackburn JT, Doi K, Macmahan H (1999) Computerized detection of pulmonary nodules on CT scans. Radiographics 19(5):1303–1311

    Article  Google Scholar 

  • Aubry CB, Hill C, Grenier PA (2007) Management of an incidentally discovered pulmonary nodule. Eur Radiol 17:449–466

    Article  Google Scholar 

  • Bezdek CJ (1981) Pattern Recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, Norwell, MA (ISBN: 0-306-40671-3)

  • Cancer Facts and Figures (2014) American cancer society: cancer statistics. http://www.cancer.org

  • Chaira T, Ray AK (2009) Fuzzy image processing and applications with MATLAB. CRC press, Taylor and Francis publisher

  • Chang C, Lin C (2014) A library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm/

  • Civicioglu P, Besdok E (2013) A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346

    Article  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press

  • Da Silva Sousa JRF, Silva AC, De Paiva AC, Nunes RA (2010) Methodology for automatic detection of lung nodules in computerized tomography images. Comput Methods Prog Biomed 98:1–14

    Article  Google Scholar 

  • Daliric MR (2012) A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines. J Med Syst 36:1001–1005

    Article  Google Scholar 

  • Dehmeshki D, Ye X, Lin X, Validivieso M, Amin H (2007) Automated detection of lung nodules in CT images using shape-based genetic algorithm. Comput Med Imaging Graph 31:408–417

    Article  Google Scholar 

  • Dehmeshki J, Amin H, Valdivieso M, Ye X (2008) Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging 27(4):467–480

    Article  Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57

    Article  MathSciNet  MATH  Google Scholar 

  • El-Baz A, Beache GM, Gimel’farb G, Suzuki K, Okada K, Elnakib A, Soliman A, Abdollahi B. (2013). Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging 1–46

  • ELCAP Public Lung Image Database (2014) http://www.via.cornell.edu/lungdb.html. Accessed 15.19, 2014

  • Engin Avci (2012). A new expert system for diagnosis of lung cancer: GDA–LS_SVM. J Med Syst 36(3):2005–2009

    Article  Google Scholar 

  • Gadekallu TR, Khare N (2017) Cuckoo search optimized reduction and fuzzy logic classifier for heart disease and diabetes prediction. Int J Fuzzy Syst Appl (IJFSA) 6(2):25–42

    Article  Google Scholar 

  • Giger ML, Bae KT, MacMahon. H (1994) Computerized detection of pulmonary nodules in computed tomography images. Invest Radiol 29(4):459–465

    Article  Google Scholar 

  • Girvin F, Ko JP (2008) Pulmonary nodules: detection, assessment, and CAD [J]. AJR Am J Roentgenol 191(4):1057–1069

    Article  Google Scholar 

  • Gomathi M, Thangaraj P (2010). A new approach to lung image segmentation using fuzzy possibilistic C-means algorithm. Int J Comput Sci Inf Secur 7(3):222–228

    Google Scholar 

  • Gomathi M, Thangaraj P (2012) An effective classification of benign and malignant nodules using support vector machine. J Global Res Comput Sci 3(7):6–9

    Google Scholar 

  • Gonzalez RC, Woods RE (2008) Digital image processing, 2nd edn. Prentice hall, Englewood Cliffs, NJ

    Google Scholar 

  • Gorodkin J (2004) Comparing two K-category assignments by a K-category correlation coefficient. Comput Biol Chem 28(5–6):367–374

    Article  MATH  Google Scholar 

  • Gurcan MN, Sahiner B, Petrick N, Chan HP, Kazerooni EA, Cascade PN, Hadjiiski LM (2002) Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys 29(11):2552–2558

    Article  Google Scholar 

  • Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3(5):672–682

    Article  Google Scholar 

  • Hashemi A, Pilevar AH, Rafeh R (2013) Mass detection in lung CT images using region growing segmentation and decision making based on fuzzy inference system and artificial neural network. Int J Image Graph Signal Process (IJIGSP) 6(1):1–8

    Article  Google Scholar 

  • Henschke CJ, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G, Miettinen OS, Libby DM, Pasmantier MW, Koizumi J, Altorki K, Smith JP (1999) Early lung cancer action project: overall design and findings from baseline screening. Lancet 354(9173):99–105

    Article  Google Scholar 

  • Hoffman EA, McLennan G (1997) Assessment of the pulmonary structure–function relationship and clinical outcomes measures: quantitative volumetric CT of the lung. Acad Radiol 4(11):758–776

    Article  Google Scholar 

  • Homma N (2011) ct image based computer-aided lung cancer diagnosis, theory and applications of CT imaging and analysis. In: Homma N (ed) InTech. http://www.intechopen.com/books/theory-and-applications-of-ct-imaging-and-analysis/ct-image-basedcomputer-aided-lung-cancer-diagnosis. (ISBN: 978-953-307-234-0)

  • Hong H, Lee J, Yim Y (2008) Automatic lung nodule matching on sequential CT images. Comput Biol Med 38:623–634

    Article  Google Scholar 

  • Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector machines. Department of Computer Science and Information Engineering, National Taiwan University

  • Hu S, Hoffman EA, Reinhardt JM (2001) Accurate lung segmentation for accurate quantization of volumetric X-ray CT images. IEEE Trans Med Imaging 20(6):490–498

    Article  Google Scholar 

  • International early lung cancer action program (I-ELCAP) (2006) Survival of patients with stage I lung cancer detected on CT screening. NEM, 355(17):1763–1771

    Article  Google Scholar 

  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics. CA Cancer J Clin 55:10–30

    Article  Google Scholar 

  • Jinsa K, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113:202–209

    Article  Google Scholar 

  • Karthikeyan C, Ramadoss B, Baskar S (2012) Segmentation algorithm for ct images using morphological operation and artificial neural network. Int J Signal Process Image Process Patt Recognit 5(2):115–122

    Google Scholar 

  • Kohad R, Ahire V (2014) Diagnosis of lung cancer using support vector machine with ant colony optimization technique. Int J Adv Comput Sci Technol (IJACST) 3(11):19–25

    Google Scholar 

  • Koltchinskii V, Panchenko D (2002) Empirical margin distributions and bounding the generalization error of combined classifiers. Ann Stat 30(1):1–50

    MathSciNet  MATH  Google Scholar 

  • Kostis WJ, Reeves AP, Yankelevitz DF, Henschke CI (2003) Three dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Tans Med Imag 22(10):1259–1273

    Article  Google Scholar 

  • Krishnan MMR, Chakraborty C, Paul RR, Ray AK (2012) Hybrid segmentation, characterization and classification of basal cell nuclei from histopathological images of normal oral mucosa and oral sub mucous fibrosis. Expert Syst Appl 39(1):1062–1077

    Article  Google Scholar 

  • Krishnana MMR, Pal M, Bomminayuni SK, Chakraborty C, Paul RR, Chatterjee J, Ray AK (2009) Automated classification of cells in sub-epithelial connective tissue of oral sub-mucous fibrosis—an SVM based approach. Comput Biol Med 39(12):1096–1104

    Article  Google Scholar 

  • Kubota T, Jerebko AK, Dewan M, Salganicoff, Krishnan MA (2011) Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med Image Anal 15(1):133–154

    Article  Google Scholar 

  • Kuhnigk JM, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S (2006) Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging 25(6):490–498

    Google Scholar 

  • Lee SLA, Kouzani AZ, Hu EJ (2010) Random forest based lung nodule classification aided by clustering. Comput Med Imaging Graph 34:535–542

    Article  Google Scholar 

  • Lemjabbar-Alaoui H, Hassan OUI, Yang YW, Buchanan P (2015) Lung cancer: biology and treatment options. Biochem Biophys Acta 1856:189–210

    Google Scholar 

  • Leung A, Smithuis R (2007) Solitary pulmonary nodule: benign versus malignant. http://www.radiologyassistant.nl/en/p460f9fcd50637/solitary-pulmonary-nodule-benign-versus-malignant.html

  • Li Y, Shen Y (2010) Fuzzy c-means clustering based on spatial neighbourhood information for image segmentation. J Syst Eng Electron 21:323–328

    Article  Google Scholar 

  • Liu X, Fu H (2014) PSO-based support vector machine with cuckoo search technique for clinical disease diagnoses. Sci World J 2014:1–7

  • Magalhaes BNS, Silva AFC, Nunes RA, Gattass M (2012) Automatic segmentation of lung nodules with growing neural gas and support vector machine. Comput Biol Med 42:1110–1121

    Article  Google Scholar 

  • Micheli A, Baili P, Quinn M, Mugno E, Capocaccia R, Grosclaude P (2003) Life expectancy and cancer survival. The EUROCARE Working Group in the EUROCARE-3 cancer registry areas. Ann Oncol 14(5):V28–V40

    Article  Google Scholar 

  • Mohanty AK, Senapati MR, Lenka SK (2013) A novel image mining technique for classification of mammograms using hybrid feature selection. Neural Comput Appl 22(6):1151–1161

    Article  Google Scholar 

  • Motohiro A, Ueda H, Komatsu H, Yanai N, Mori T (2002) Prognosis of non-surgically treated, clinical stage I lung cancer patients in Japan. Lung Cancer 36:65–69

    Article  Google Scholar 

  • Okumura T, Miwa T, Kako J, Yamamoto S, Matsumoto M, Tateno Y, Iinuma T, Matsumoto T (1998). Variable-N-Quoit filter applied for automatic detection of lung cancer by X-ray CT. Proc Comput Assist Radiol 242–247 (in Japanese)

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 9(1):62–66

    Article  Google Scholar 

  • Patil SA, Udupi VR, Kane CD, Wasif AI, Desai JV, Jadhav AN (2009) Geometrical and texture feature estimation of lung cancer and TB image using chest X-ray database. International Conference on Biomedical and Pharmaceutical Engineering (ICBPE ‘09), pp 1–7

  • Prokop M, Galanshi M (2003). Spiral and multislice computed tomography of the body. Thime medical publishers, Stuttgart

  • Pu J, Leader JK, Zheng B (2009) A computational geometry approach to automated pulmonary fissure segmentation in CT examinations. IEEE Trans Med Imaging 28(5):710–719

    Article  Google Scholar 

  • Roman R, Lopez J, Mambo M (2016) Mobile edge computing., Fog et al.: A survey and analysis of security threats and challenges. Future Gen Comput Syst (Article in online)

  • Rouhi R, Jafari M (2016) Classification of benign and malignant breast tumors on hybrid level set segmentation. Experts Syst Appl 46:45–59

    Article  Google Scholar 

  • Santos AM, Ode A, Filho C, Silva AC, Nunes RA (2014) Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models, Tsallis entropy and SVM. Eng Appl Artif Intell 36:27–39

    Article  Google Scholar 

  • Schilham AMR, Ginneken BV, Loog M (2006) A Computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Med Image Anal 10:247–258

    Article  Google Scholar 

  • Shaik Parveen S, Kavitha C (2014) Classification of lung cancer nodules using SVM Kernels. Int J Comput Appl 95(25):25–28

    Google Scholar 

  • Sharma D, Jindal G (2011) Identifying lung cancer using image processing techniques. In: International Conference on Computational Techniques and Artificial Intelligence (ICCTAI’2011), pp 115–122

  • Shehab M, Khader AT, Al-Betar MA (2017) A survey on applications and variants of the cuckoo search algorithm. Appl Soft Comput J (Article in press)

  • Shen S, Bui AA, Cong J, Hsu W (2015) An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy. Comput Biol Med 57:139–149

    Article  Google Scholar 

  • Singh AAG, Jebamalar Leavline E, Valliyappan K, Srinivasan M (2015) Enhancing the performance of classifier using particle swarm optimization (PSO) based dimensionality reduction. Int J Energy Inf Commun 6(5):19–26

    Google Scholar 

  • Sluimer I, Schilham A, Prokop M, Ginneken BV (2006) Computer Analysis of computer tomography scans of the lung: a survey. IEEE Trans Med Imag 25(4):385–405

    Article  Google Scholar 

  • Subashini MM, Sahoo SK, Sunil V, Easwaran S (2016) A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst Appl 43:186–196

    Article  Google Scholar 

  • Sun S, Ren H, Kang Y, Zhao H (2011) Lung nodule detection by GA and SVM. J Syst Simul 23(3):497–502

    Google Scholar 

  • Sun T, Wanga J, Li X, Lv P, Liu F, Luo Y, Gao Q, Zhu H, Guo X (2013). Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set. Comput Methods Progr Biomed 111(2):519–524

  • Tay D, Pohb CL, Goha C, Kitney RI (2014) A biological continuum based approach for efficient clinical classification. J Biomed Inform 47:28–38

    Article  Google Scholar 

  • Vapnik VN, Kotz S (2006). Estimation of dependences based on empirical data. Springer (ISBN: 0-387-30865-2)

  • Wafa M, Zagrouba E (2009) Improved fuzzy-c-means for noisy image segmentation. SIGMAP 2009, pp 74–78

  • Xin-She Y (2014) Cuckoo search and firefly algorithm theory and applications. Springer

  • Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Proc. of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), pp 210–214

  • Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Num Optim 1(4):330–343

    MATH  Google Scholar 

  • Yi S, Qin Z, Li Q (2015) Security and privacy issues of fog computing: a survey. In: International conference on wireless algorithms, systems, and applications. Springer, pp 685–695

  • Zhao B, Yankelevitz D, Reeves A, Henschke C (1999) Two-dimensional multi-criterion segmentation of pulmonary nodules in helical CT images. Med Phys 26(6):889–895

    Article  Google Scholar 

  • Zhou S, Chenga Y, Tamura S (2014) Automated lung segmentation and smoothing techniques for inclusion of juxta pleural nodules and pulmonary vessels on chest CT images. Biomed Signal Process Control 13:62–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prabukumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabukumar, M., Agilandeeswari, L. & Ganesan, K. An intelligent lung cancer diagnosis system using cuckoo search optimization and support vector machine classifier. J Ambient Intell Human Comput 10, 267–293 (2019). https://doi.org/10.1007/s12652-017-0655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0655-5

Keywords

Navigation