High-speed visualization and image processing of sub-atmospheric water boiling on a transparent heater

Abstract

The paper is devoted to the processing and analysis of the high-speed visualization data on water pool boiling in the pressure range of 5.5–103 kPa. The study of the vapor bubbles dynamics and evolution of void fraction near a heated wall during boiling was performed using a special design of a transparent heating element and high-speed visualization from its bottom side. To analyze the wide array of video data, automatic image processing programs were developed. As a result, a detailed statistical analysis of the growth curves and departure diameters of vapor bubbles during boiling at different pressures was carried out. It was shown that at ultra-low pressure 5.5 kPa after the departure of massive vapor bubbles the pulsating boiling regime was occurred. A method based on the estimation of void fraction near a heated wall was proposed and implemented for the description of this cyclic boiling regime at low sub-atmospheric pressure.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdelmessih AH, Hooper FC, Nangia S (1972) Flow effects on bubble growth and collapse in surface boiling. Int J Heat Mass Transfer 15(1):115–125. https://doi.org/10.1016/0017-9310(72)90170-6

    Article  Google Scholar 

  2. Abdurakipov SS, Tokarev MP, Pervunin KS, Dulin VM (2019) Modeling of the tonal noise characteristics in a foil flow by using machine learning. Optoelectron Instr Data Proc 55(2):205–211. https://doi.org/10.3103/S8756699019020134

    Article  Google Scholar 

  3. Atherton TJ, Kerbyson DJ (1999) Size invariant circle detection. Image Vis Comput 17(11):795–803. https://doi.org/10.1016/S0262-8856(98)00160-7

    Article  Google Scholar 

  4. Davies ER (2012) Computer and machine vision: theory, algorithms, practicalities. Academic Press, New York

    Google Scholar 

  5. Dedov AV, Zabirov AR, Sliva AP et al (2019) Effect of coating by a carbon nanostructure on heat transfer with unsteady film boiling. High Temp 57:63–72. https://doi.org/10.1134/S0018151X19010048

    Article  Google Scholar 

  6. Fu Y, Liu Y (2019) BubGAN: bubble generative adversarial networks for synthesizing realistic bubbly flow images. Chem Eng Sci 204:35–47. https://doi.org/10.1016/j.ces.2019.04.004

    Article  Google Scholar 

  7. Gabriel S, Schulenberg T, Albrecht G, Heiler W, Miassoedov A, Kaiser F, Wetzel T (2018) Optical void measurement method for stratified wavy two phase flows. Exp Therm Fluid Sci 97:341–350. https://doi.org/10.1016/j.expthermflusci.2018.05.001

    Article  Google Scholar 

  8. Garrabos Y, Lecoutre C, Beysens D, Nikolayev V, Barde S, Pont G, Zappoli B (2010) Transparent heater for study of the boiling crisis near the vapor–liquid critical point. Acta Astronaut 66(5–6):760–768. https://doi.org/10.1016/j.actaastro.2009.08.018

    Article  Google Scholar 

  9. Gerardi C, Buongiorno J, Hu LW, McKrell T (2010) Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. Int J Heat Mass Transf 53(19–20):4185–4192. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.041

    Article  Google Scholar 

  10. Giraud F, Rullière R, Toublanc C, Clausse M, Bonjour J (2015) Experimental evidence of a new regime for boiling of water at sub-atmospheric pressure. Exp Therm Fluid Sci 60:45–53. https://doi.org/10.1016/j.expthermflusci.2014.07.011

    Article  Google Scholar 

  11. Gunther FC (1951) Photographic study of surface-boiling heat transfer to water forced convection. Trans ASME 73:115–123

    Google Scholar 

  12. Labuntsov DA, Kolchugin BA, Golovin VS, Zakharova E, Vladimirova L (1964) Investigation of bubble growth in boiling saturated water by high-speed photography for a wide range of variation of the pressure. Teplofiz Vys Temp 2(3):446–453

    Google Scholar 

  13. Lobanov P, Pakhomov M, Terekhov V (2019) Experimental and numerical study of the flow and heat transfer in a bubbly turbulent flow in a pipe with sudden expansion. Energies 12(14):2735. https://doi.org/10.3390/en12142735

    Article  Google Scholar 

  14. Mamontova NN (1966) Boiling of certain liquids at reduced pressures. J Appl Mech Tech Phys 7(3):94–98

    Article  Google Scholar 

  15. Maurus R, Ilchenko V, Sattelmayer T (2004) Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling. Int J Heat Fluid Flow 25(2):149–158. https://doi.org/10.1016/j.ijheatfluidflow.2003.11.007

    Article  Google Scholar 

  16. McAdams WH (1954) Heat transmission, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  17. Narayan S, Srivastava A, Singh S (2019) Rainbow Schlieren-based direct visualization of thermal gradients around single vapor bubble during nucleate boiling phenomena of water. Int J Multiphase Flow 110:82–95. https://doi.org/10.1016/j.ijmultiphaseflow.2018.08.012

    Article  Google Scholar 

  18. Nguyen HT, Nguyen TH, Dreglea AI (2018) Robust approach to detection of bubbles based on images analysis. Int J Artif Intell 16:167–177

    Google Scholar 

  19. Nishio S, Tanaka H (2004) Visualization of boiling structures in high heat–flux pool boiling. Int J Heat Mass Transf 47(21):4559–4568. https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.033

    Article  Google Scholar 

  20. Rana KB, Agrawal GD, Mathur J, Puli U (2014) Measurement of void fraction in flow boiling of ZnO–water nanofluids using image processing technique. Nucl Eng Des 270:217–226. https://doi.org/10.1016/j.nucengdes.2014.01.008

    Article  Google Scholar 

  21. Ronshin F, Chinnov E (2019) Experimental characterization of two-phase flow patterns in a slit microchannel. Exp Therm Fluid Sci 103:262–273. https://doi.org/10.1016/j.expthermflusci.2019.01.022

    Article  Google Scholar 

  22. Sadaghiani AK, Altay R, Noh H, Kwak HJ, Şendur K, Mısırlıoğlu B, Park HS, Koşar A (2020) Effects of bubble coalescence on pool boiling heat transfer and critical heat flux—a parametric study based on artificial cavity geometry and surface wettability. Int J Heat Mass Transf 147:118952. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118952

    Article  Google Scholar 

  23. Serdyukov VS, Surtaev AS, Pavlenko AN, Chernyavskiy AN (2018) Study on local heat transfer in the vicinity of the contact line under vapor bubbles at pool boiling. High Temp 56(4):546–552. https://doi.org/10.1134/S0018151X18040168

    Article  Google Scholar 

  24. Strokina N, Matas J, Eerola T, Lensu L, Kälviäinen H (2016) Detection of bubbles as concentric circular arrangements. Mach Vis Appl 27(3):387–396. https://doi.org/10.1007/s00138-016-07497

    Article  Google Scholar 

  25. Surtaev A, Kuznetsov D, Serdyukov V, Pavlenko A, Kalita V, Komlev D, Ivannikov A, Radyuk A (2018a) Structured capillary-porous coatings for enhancement of heat transfer at pool boiling. Appl Therm Eng 133:532–542. https://doi.org/10.1016/j.applthermaleng.2018.01.051

    Article  Google Scholar 

  26. Surtaev A, Serdyukov V, Zhou J, Pavlenko A, Tumanov V (2018b) An experimental study of vapor bubbles dynamics at water and ethanol pool boiling at low and high heat fluxes. Int J Heat Mass Transf 126:297–311. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.001

    Article  Google Scholar 

  27. Surtaev A, Serdyukov V, Malakhov I (2020) Effect of sub-atmospheric pressures on heat transfer, vapor bubbles and dry spots evolution during water boiling. Exp Therm Fluid Sci 112:109974. https://doi.org/10.1016/j.expthermflusci.2019.109974

    Article  Google Scholar 

  28. Takenaka N, Asano H, Fujii T, Murata Y, Mochiki K, Taguchi A, Matsubayashi M, Tsuruno A (1996) Void fraction distribution measurement in two-phase flow by real-time neutron radiography and real-time image processing. Nucl Instrum Methods Phys Res Sect A 377(1):153–155. https://doi.org/10.1016/0168-9002(96)00133-7

    Article  Google Scholar 

  29. Vorobev MA, Kashinskii ON, Lobanov PD, Chinak AV (2012) Formation of the finely dispersed gas phase in upward and downward fluid flows. Fluid Dyn 47(4):494–500. https://doi.org/10.1134/S0015462812040084

    Article  MATH  Google Scholar 

  30. Voulgaropoulos V, Aguiar GM, Matar OK, Bucci M, Markides CN (2019) Temperature and velocity field measurements of pool boiling using two-colour laser-induced fluorescence, infrared thermometry and particle image velocimetry. In: 10th international conference on multiphase flow, May 19–24, 2019, Rio de Janeiro, Brazil

  31. Yan Y, Wang L, Wang T, Wang X, Hu Y, Duan Q (2018) Application of soft computing techniques to multiphase flow measurement: A review. Flow Meas Instr 60:30–43. https://doi.org/10.1016/j.flowmeasinst.2018.02.017

    Article  Google Scholar 

  32. Yuen HK, Princen J, Illingworth J, Kittler J (1990) Comparative study of Hough transform methods for circle finding. Image Vis Comput 8(1):71–77. https://doi.org/10.1016/0262-8856(90)90059-E

    Article  Google Scholar 

  33. Zupančič M, Može M, Gregorčič P, Sitar A, Golobič I (2017) Evaluation of enhanced nucleate boiling performance through wall-temperature distributions on PDMS-silica coated and non-coated laser textured stainless steel surfaces. Int J Heat Mass Transf 111:419–428. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.128

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by the Russian Science Foundation (Project No. 18-79-00078).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir Serdyukov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, V., Malakhov, I. & Surtaev, A. High-speed visualization and image processing of sub-atmospheric water boiling on a transparent heater. J Vis (2020). https://doi.org/10.1007/s12650-020-00660-z

Download citation

Keywords

  • Sub-atmospheric boiling
  • Vapor bubbles evolution
  • High-speed visualization
  • Image processing
  • Transparent heater design