Journal of Visualization

, Volume 20, Issue 2, pp 289–304 | Cite as

Simultaneous PIV/PTV velocimetry technique in a turbulent particle-laden flow

  • M. ElhimerEmail author
  • O. Praud
  • M. Marchal
  • S. Cazin
  • R. Bazile
Regular Paper


In a three-dimensional two-phase flow, accessing the velocity fields of the two phases simultaneously is challenging. Nevertheless, information about the local relative motion between the two phases is particularly valuable to quantify the inter-phase interactions. In this article, the dynamics of neutrally buoyant finite-sized particles embedded in a three-dimensional turbulence is investigated using a simultaneous particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurement technique based on optical discrimination of the two phases prior to image acquisition. The implementation of this dual whole-field velocimetry technique is presented and detailed. With this technique, we were able to measure the instantaneous and local velocity differences between the particles and the underlying fluid. Our results show that, whereas the single-point velocity statistics of the two phases are very similar, the particles often have different local velocity than the velocity of the neighboring fluid. The relative velocity increases with the relative size of the particle to the Kolmogorov scale. In addition, the relative velocity exhibits an intermittent distribution.

Graphical abstract


Particle-laden flow Optical discrimination Towad grid turbulence Particle image velocimetry Particle tracking velocimetry 


  1. Adrian RJ (1997) Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas Sci Technol 8(12):1393CrossRefGoogle Scholar
  2. Adrian RJ, Westerweel J (2011) Particle image velocimetry, vol 30. Cambridge University Press, CambridgezbMATHGoogle Scholar
  3. Aliseda A, Cartellier A, Hainaux F, Lasheras JC (2002) Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 468:77–105CrossRefzbMATHGoogle Scholar
  4. Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Revi Fluid Mech 42:111–133CrossRefzbMATHGoogle Scholar
  5. Bec J, Biferale L, Boffetta G, Celani A, Cencini M, Lanotte A, Musacchio S, Toschi F (2006) Acceleration statistics of heavy particles in turbulence. J Fluid Mech 550:349–358CrossRefzbMATHGoogle Scholar
  6. Blois G, Barros JM, Christensen KT (2015) A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid-liquid interactions in a porous micromodel. Microfluid Nanofluidics 18(5–6):1391–1406CrossRefGoogle Scholar
  7. Bosse T, Kleiser L, Meiburg E (2006) Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys Fluids 18(2):027102CrossRefGoogle Scholar
  8. Calzavarini E, Volk R, Lévêque E, Pinton JF, Toschi F (2012) Impact of trailing wake drag on the statistical properties and dynamics of finite-sized particle in turbulence. Phys D Nonlinear Phenom 241(3):237–244MathSciNetCrossRefzbMATHGoogle Scholar
  9. Charonko JJ, Vlachos PP (2013) Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas Sci Technol 24(6):065301CrossRefGoogle Scholar
  10. Elhimer M, Jean A, Praud O, Bazile R, Marchal M, Couteau G (2011) Dynamics of finite size neutrally buoyant particles in isotropic turbulence. In: Journal of Physics: Conference Series, vol 318. IOP Publishing, Bristol, pp 052004Google Scholar
  11. Fernando, HJS, De Silva IPD (1993) Note on secondary flows in oscillating-grid, mixing-box experiments. Phys Fluids A Fluid Dyn (1989–1993) 5(7):1849–1851Google Scholar
  12. Ferrante A, Elghobashi S (2003) On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys Fluids 15(2):315–329CrossRefzbMATHGoogle Scholar
  13. Fincham AM, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp Fluids 29(1):S013–S022Google Scholar
  14. Fincham AM, Spedding GR (1997) Low cost, high resolution dpiv for measurement of turbulent fluid flow. Exp Fluids 23(6):449–462CrossRefGoogle Scholar
  15. Fincham AM, Spedding GR, Blackwelder RF (1991) Current constraints of digital particle tracking techniques in fluid flows. Bull Am Phys Soc 36:2692Google Scholar
  16. Hagiwara Y, Murata T, Tanaka M, Fukawa T (2002) Turbulence modification by the clusters of settling particles in turbulent water flow in a horizontal duct. Powder Technol 125(2):158–167CrossRefGoogle Scholar
  17. Homann H, Bec J (2010) Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J Fluid Mech 651:81MathSciNetCrossRefzbMATHGoogle Scholar
  18. Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. i. double pulsed systems. Meas Sci Technol 1(11):1202CrossRefGoogle Scholar
  19. Khalitov DA, Longmire EK (2002) Simultaneous two-phase piv by two-parameter phase discrimination. Exp Fluids 32(2):252–268CrossRefGoogle Scholar
  20. Kiger KT, Pan C (2000) Piv technique for the simultaneous measurement of dilute two-phase flows. J Fluids Eng 122(4):811–818CrossRefGoogle Scholar
  21. Lu J, Nordsiek H, Shaw RA (2010) Clustering of settling charged particles in turbulence: theory and experiments. New J Phys 12(12):123030CrossRefGoogle Scholar
  22. Mohamed MS, Larue JC (1990) The decay power law in grid-generated turbulence. J Fluid Mech 219(-1):195Google Scholar
  23. Monchaux R, Bourgoin M, Cartellier A (2012) Analyzing preferential concentration and clustering of inertial particles in turbulence. Int J Multiph Flow 40:1–18CrossRefGoogle Scholar
  24. Monin AS, Yaglom AM (1975) Statistical fluid mechanics: mechanics of turbulence, vol 2. MIT Press, Cambridge, p 874zbMATHGoogle Scholar
  25. Morize C, Moisy F, Rabaud M (2005) Decaying grid-generated turbulence in a rotating tank. Phys Fluids 17(9):5105CrossRefzbMATHGoogle Scholar
  26. Ouellette NT, Malley PJJO, Gollub JP (2008) Transport of finite-sized particles in chaotic flow. Phys Rev Lett 101(17):174504CrossRefGoogle Scholar
  27. Poelma C (2004) Experiments in particle-laden turbulence: simultaneous particle/fluid measurements in grid-generated turbulence using particle image velocimetry. PhD thesis, TU Delft, Delft University of TechnologyGoogle Scholar
  28. Poelma C, Westerweel J, Ooms G (2006) Turbulence statistics from optical whole-field measurements in particle-laden turbulence. Exp Fluids 40(3):347–363CrossRefGoogle Scholar
  29. Poelma C, Westerweel J, Ooms G (2007) Particle-fluid interactions in grid-generated turbulence. J Fluid Mech 589(1):315–351zbMATHGoogle Scholar
  30. Qureshi NM, Bourgoin M, Baudet C, Cartellier A, Gagne Y (2007) Turbulent transport of material particles: an experimental study of finite size effects. Phys Rev Lett 99(18):184502CrossRefGoogle Scholar
  31. Schmitt FG, Seuront L (2008) Intermittent turbulence and copepod dynamics: increase in encounter rates through preferential concentration. J Mar Syst 70(3):263–272CrossRefGoogle Scholar
  32. Sciacchitano A, Neal DR, Smith BL, Warner SO, Vlachos PP, Wieneke B, Scarano F (2015) Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas Sci Technol 26(7):074004. ISSN:0957-0233Google Scholar
  33. Spedding GR, Rignot EJM (1993) Performance analysis and application of grid interpolation techniques for fluid flows. Exp Fluids 15(6):417–430CrossRefGoogle Scholar
  34. Squires KD, Eaton JK (1991) Preferential concentration of particles by turbulence. Phys Fluids A Fluid Dyn 3(5):1169CrossRefGoogle Scholar
  35. Takehara K, Etoh T (1999) A study on particle identification in ptv particle mask correlation method. J Vis 1(3):313–323CrossRefGoogle Scholar
  36. Vignal L (2006) Chute d’un nuage de particules dans une turbulence diffusive. Etude des couplages entre phases par diagnostics optiques. PhD thesis, Institut National Polytechnique de ToulouseGoogle Scholar
  37. Weil JC, Sykes RI, Venkatram A (1992) Evaluating air-quality models: review and outlook. J Appl Meteorol 31(10):1121–1145CrossRefGoogle Scholar
  38. Yoshimoto H, Goto S (2007) Self-similar clustering of inertial particles in homogeneous turbulence. J Fluid Mech 577:275CrossRefzbMATHGoogle Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  • M. Elhimer
    • 1
    Email author
  • O. Praud
    • 1
  • M. Marchal
    • 1
  • S. Cazin
    • 1
  • R. Bazile
    • 1
  1. 1.Institut de Mécanique des Fluides de ToulouseUniversity of Toulouse, INPT, CNRS, IMFTToulouseFrance

Personalised recommendations