Journal of Visualization

, Volume 20, Issue 2, pp 231–235 | Cite as

Flow visualization for shock-induced boundary-layer separation extended to the flat-plate-leading edge

  • Yuan TaoEmail author
  • Weidong Liu
  • Xiaoqiang Fan
Short Paper

Graphical abstract


Particle Image Velocimetry Incident Shock Mach Reflection Regular Reflection Separation Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to gratefully acknowledge the help of Science and Technology on Scramjet laboratory. This work was supported by the National Natural Science Foundation of China NSFC Grants 11372347 and 11572347. This support was gratefully acknowledged.


  1. Adams N (2000) Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1685. J Fluid Mech 420:47–83. doi: 10.1017/S0022112000001257 CrossRefzbMATHGoogle Scholar
  2. Chen Z, Yi SH, Tian LF, He L, Zhu YZ (2013) Flow visualization of supersonic laminar flow over a backward-facing step via NPLS. Shock Waves 23(4):299–306. doi: 10.1007/s00193-012-0378-7 CrossRefGoogle Scholar
  3. Dupont P, Haddad C, Debieve JF (2006) Space and time organization in a shock-induced separated boundary layer. J Fluid Mech 559:255–277. doi: 10.1017/S0022112006000267 CrossRefzbMATHGoogle Scholar
  4. Edwards JR, Choi J-I, Boles JA (2008) Large eddy/Reynolds-averaged Navier–Stokes simulation of a Mach-5 compression corner interaction. AIAA J 46(4):977–991. doi: 10.2514/1.32240 CrossRefGoogle Scholar
  5. Fan X, Tao Y (2015) Investigation of flow control for the hypersonic inlets via counter flow. Int J Aerosp Eng 2015:956317. doi: 10.1155/2015/956317 CrossRefGoogle Scholar
  6. Garnier E, Sagaut P, Deville M (2002) Large-Eddy simulation of shock/boundary-layer interaction. AIAA J 40:1935–1944. doi: 10.2514/2.1552 CrossRefGoogle Scholar
  7. He L, Yi SH, Zhao YX, Tian LF, Chen Z (2011) Visualization of coherent structures in a supersonic flat-plate boundary layer. Chin Sci Bull 56:489–494. doi: 10.1007/s11434-010-4912-z CrossRefGoogle Scholar
  8. Humble RA, Scarano F, van Oudheusden BW (2007) Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp Fluids 43:173–183. doi: 10.1007/s00348-007-0337-8 CrossRefGoogle Scholar
  9. Segal C (2009) The scramjet engine processes and characteristics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  10. Smits AJ, Dussuage JP (2006) Turbulent shear layers in supersonic flow, 2nd edn. American Institute of Physics, New YorkGoogle Scholar
  11. Tao Y, Fan XQ, Zhao YL (2015) Flow visualization for the evolution of the slipstream in steady shock reflection. J Vis 18(1):21–24. doi: 10.1007/s12650-014-0236-z CrossRefGoogle Scholar
  12. Tao Y, Liu WD, Fan XQ (2016) Investigation of shock-induced boundary layer separation extended to the flat plate leading-edge. Acta Mech 227:1971–1977. doi: 10.1007/s00707-016-1599-0 CrossRefGoogle Scholar
  13. Zhao YX, Yi SH, Tian LF, Cheng ZY (2009) Supersonic flow imaging via nanoparticles. Sci China Ser E Technol Sci 52(12):3640–3648. doi: 10.1007/s11431-009-0281-3 CrossRefzbMATHGoogle Scholar

Copyright information

© The Visualization Society of Japan 2016

Authors and Affiliations

  1. 1.Science and Technology on Scramjet LaboratoryNational University of Defense TechnologyChangshaChina

Personalised recommendations