Advertisement

Journal of Visualization

, Volume 20, Issue 2, pp 359–368 | Cite as

High-speed visualization of acoustically excited cavitation bubbles in a cluster near a rigid boundary

  • Haresh Anant Vaidya
  • Özgür Ertunç
  • Thomas Lichtenegger
  • Johannes Hachmann
  • Antonio Delgado
  • Andreas Skupin
Regular Paper

Abstract

In the present work, high-speed visualizations at one million frames/s have been used to study the oscillation characteristics of acoustic cavitation bubbles. The bubbles are generated by acoustic cavitation using an ultrasound transducer with an excitation frequency of 75 kHz near a rigid surface and the medium used is deionized water. The cavitation bubbles tend to collect in clusters near solid boundaries, where they are visualized using a high-speed camera. The collective oscillations give rise to many interesting phenomena like bubble collapse, coalescence, fragmentation and bubble translation. The image sequences provided here contribute to the better understanding of the entire lifecycle of acoustic cavitation bubbles.

Graphical abstract

Keywords

Acoustic cavitation Ultrasound High-speed visualizations Bubble dynamics Bubble cluster 

Notes

Acknowledgments

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative. We also thank the Bayerische Forschungsstiftung (BFS) for the financial support.

Supplementary material

12650_2015_280_MOESM1_ESM.mpg (698 kb)
Supplementary material 1 (mpg 698 KB)
12650_2015_280_MOESM2_ESM.mpg (612 kb)
Supplementary material 2 (mpg 612 KB)
12650_2015_280_MOESM3_ESM.mpg (464 kb)
Supplementary material 3 (mpg 464 KB)
12650_2015_280_MOESM4_ESM.mpg (1.1 mb)
Supplementary material 4 (mpg 1132 KB)

References

  1. Apfel RE (1997) Sonic effervescence: a tutorial on acoustic cavitation. J Acoust Soc Am 101:1227–1237CrossRefGoogle Scholar
  2. Arora M, Junge L, Ohl CD (2005) Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field. Ultrasound Med Biol 31:827–839CrossRefGoogle Scholar
  3. Benjamin TB, Ellis aT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos Trans A Math Phys Eng Sci 260:221–240CrossRefGoogle Scholar
  4. Birkin PR, Offin DG, Vian CJB, Leighton TG (2011) Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip. J Acoust Soc Am 130:3379–3388CrossRefGoogle Scholar
  5. Bjerknes V (1906) Fields of force. Columbia University Press, New YorkMATHGoogle Scholar
  6. Bremond N, Arora M, Ohl CD, Lohse D (2006) Controlled multibubble surface cavitation. Phys Rev Lett 96(224):501Google Scholar
  7. Brujan EA, Ikeda T, Yoshinaka K, Matsumoto Y (2011) The final stage of the collapse of a cloud of bubbles close to a rigid boundary. Ultrason Sonochem 18:59–64CrossRefGoogle Scholar
  8. Chivate MM, Pandit AB (1995) Quantification of cavitation intensity in fluid bulk. Ultrason Sonochem 2:S19–S25CrossRefGoogle Scholar
  9. Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57:1363–1370CrossRefGoogle Scholar
  10. Crum LA (1980) Measurements of the growth of air bubbles by rectified diffusion. J Acoust Soc Am 68:203–211CrossRefGoogle Scholar
  11. Crum LA (1984) Acoustic cavitation series: part five rectified diffusion. Ultrasonics 22:215–223CrossRefGoogle Scholar
  12. Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15:11–15CrossRefMATHGoogle Scholar
  13. Eller A, Flynn HG (1969) Generation of subharmonics of order one half by bubbles in a sound field. J Acoust Soc Am 46:722–727CrossRefGoogle Scholar
  14. Esche R (1952) Untersuchung der Schwingungskavitation in Flüssigkeiten. Akust Beihefte 2:208–218Google Scholar
  15. Hansson I, Mørch KA (1980) The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion. J Appl Phys 51:4651–4658CrossRefGoogle Scholar
  16. Hansson I, Kedrinskii V, Mørch KA (1982) On the dynamics of cavity clusters. J Phys D Appl Phys 15:1725–1734CrossRefGoogle Scholar
  17. Hough PVC (1962) Method and means for recognizing complex patterns. US Patent 3,069,654Google Scholar
  18. Illingworth J, Kittler J (1988) A survey of the hough transform. Comput Vision Graph 44:87–116CrossRefGoogle Scholar
  19. Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15:495–506CrossRefGoogle Scholar
  20. Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119–123CrossRefGoogle Scholar
  21. Lauterborn W (1969) On a theory of cavitation thresholds. Acta Acust United Acust 22:48–54Google Scholar
  22. Lauterborn W (1970) Resonance curves of gas bubbles in liquids. Acta Acust United Acust 23:73–81Google Scholar
  23. Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72:391–399CrossRefGoogle Scholar
  24. Lauterborn W, Cramer E (1981) Subharmonic route to chaos observed in acoustics. Phys Rev Lett 47:1445–1448CrossRefGoogle Scholar
  25. Leighton T (1994) The acoustic bubble. Oxford University Press, New YorkGoogle Scholar
  26. Leighton T (1995) Bubble population phenomena in acoustic cavitation. Ultrason Sonochem 2:S123–S136CrossRefGoogle Scholar
  27. Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations. Waves and Interactions, Universitätsverlag Göttingen, Göttingen, pp 171–198Google Scholar
  28. Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 56:2924–2931Google Scholar
  29. Minnaert M (1933) XVI. On musical air-bubbles and the sounds of running water. Philos Mag Ser 7 16:235–248Google Scholar
  30. Neppiras EA (1969) Subharmonic and other low frequency emission from bubbles in sound-irradiated liquids. J Acoust Soc Am 46:587–601CrossRefGoogle Scholar
  31. Neppiras EA (1980) Acoustic cavitation thresholds and cyclic processes. Ultrasonics 18:201–209CrossRefGoogle Scholar
  32. Neppiras EA, Fill EE (1969) A cyclic cavitation process. J Acoust Soc Am 46:1264–1271CrossRefGoogle Scholar
  33. Olson HG, Hammitt FG (1969) High-speed photographic studies of ultrasonically induced cavitation. J Acoust Soc Am 46:1272–1283CrossRefGoogle Scholar
  34. Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W (1999) Spatio-temporal dynamics of acoustic cavitation bubble clouds. Philos Trans R Soc A Math Phys Eng Sci 357:313–334CrossRefGoogle Scholar
  35. Peng T (2005) Detect circles with various radii in grayscale image via Hough transform. http://www.mathworks.de/matlabcentral/fileexchange/9168-detect-circles-with-various-radii-in-grayscale-image-via-hough-transform
  36. Prosperetti A (1975) Nonlinear oscillations of gas bubbles in liquids. Transient solutions and the connection between subharmonic signal and cavitation. J Acoust Soc Am 57:810–821CrossRefGoogle Scholar
  37. Rayleigh L (1917) VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag Ser 6 34:94–98Google Scholar
  38. Sato M, Shibuya N, Okada N, Tou T, Fujii T (2002) Oscillation mode conversion and energy confinement of acoustically agitated bubbles. Phys Rev E 65(46):302Google Scholar
  39. Smith FD (1935) XCVIII. On the destructive mechanical effects of the gas-bubbles liberated by the passage of intense sound through a liquid. Philos Mag Ser 7 19:1147–1151Google Scholar
  40. Smith RH, Mesler RB (1972) A photographic study of the effect of an air bubble on the growth and collapse of a vapor bubble near a surface. J Basic Eng 94:933–940CrossRefGoogle Scholar
  41. Tervo JT, Mettin R, Lauterborn W (2006) Bubble cluster dynamics in acoustic cavitation. Acta Acust United Acust 92:178–180Google Scholar
  42. Vian CJB, Birkin PR, Leighton TG (2010) Cluster collapse in a cylindrical cell: correlating multibubble sonoluminescence, acoustic pressure, and erosion. J Phys Chem C 114:16416–16425Google Scholar
  43. Zervacic Z, Lohse D, Van Saarloos W (2010) Collective oscillations in bubble clouds. J Fluid Mech 680(16):114–149MATHGoogle Scholar

Copyright information

© The Visualization Society of Japan 2015

Authors and Affiliations

  • Haresh Anant Vaidya
    • 1
    • 2
  • Özgür Ertunç
    • 1
    • 2
    • 3
  • Thomas Lichtenegger
    • 1
    • 2
  • Johannes Hachmann
    • 1
    • 2
  • Antonio Delgado
    • 1
    • 2
  • Andreas Skupin
    • 4
  1. 1.Institute of Fluid MechanicsFriedrich-Alexander-University of Erlangen-NurembergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)University of Erlangen-NurembergErlangenGermany
  3. 3.Department of Mechanical EngineeringOzyegin UniversityIstanbulTurkey
  4. 4.Atotech Deutschland GmbHFeuchtGermany

Personalised recommendations