Chemical and Mechanical Properties of Films Made of Cellulose Nanoplatelets and Cellulose Fibers Obtained from Banana Pseudostem


Biopolymers arise as a good substitute for synthetic polymers, regardless of the energy demand and the complex processes required to isolate such biopolymers. Cellulose is an organic polymer that can be found in all terrestrial plants and is the most abundant organic biomolecule on the Earth. However, the mechanical properties of most biopolymers are not as good as the ones of synthetic polymers under environmental conditions, because they are highly hydrophilic. In this work, we aimed to extract cellulose nanoplatelets (CNP) and cellulose fibers (CF) from the banana pseudostem through one step of alkalinization followed by acid hydrolysis, to obtain a self-standing transparent film. The obtained all-cellulose material (CF/CNP) was characterized by Optic Microscopy, Scanning Electron Microscopy, Attenuates Total Reflection Spectroscopy, X-Ray diffraction. Also, CF/CNP films were made in order to test their tensile and strength properties, along with the simulated biodegradability using enzymatic hydrolysis.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Luckachan, G.E., Pillai, C.K.S.: Biodegradable polymers-a review on recent trends and emerging perspectives. J. Polym. Environ. 19, 637–676 (2011)

    Article  Google Scholar 

  2. 2.

    Narancic, T., Cerrone, F., Beagan, N., et al.: Recent advances in bioplastics: application and biodegradation. Polymers 12, 920 (2020)

    Article  Google Scholar 

  3. 3.

    Bar-On, Y.M., Philips, R., Milo, R.: The biomass distribution on Earth. PNAS 115, 6506–6511 (2018)

    Article  Google Scholar 

  4. 4.

    Chen, C.C., Dai, L., Ma, L., et al.: Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4, 114–126 (2020)

    Article  Google Scholar 

  5. 5.

    Zhou, C.H., Xia, X., Lin, C.X., et al.: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588–5617 (2011)

    Article  Google Scholar 

  6. 6.

    Ahn, Y., Lee, S.H., Kim, H.J., et al.: Electrospinning of lignocellulosic biomass using ioni liquid. Carbohydr. Polym. 88, 395–398 (2012)

    Article  Google Scholar 

  7. 7.

    Chávez-Guerrero, L., Sepúlveda-Guzmán, S., Rodríguez-Liñan, C., et al.: Isolation and characterization of cellulose nanoplatelets from the parenchyma cells of Agave salmiana. Cellulose 24, 3741–3752 (2017)

    Article  Google Scholar 

  8. 8.

    Zhang, J., Luo, N., Wan, J., et al.: Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additonal in situ-retained cellulose nanocrystals. ACS Sustain. Chem. Eng. 5(6), 5127–5133 (2017)

    Article  Google Scholar 

  9. 9.

    Malainine, M.E., Mahrouz, M., Dufresen, A.: Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos. Sci. Technol. 65(10), 1520–1526 (2005)

    Article  Google Scholar 

  10. 10.

    Fortunati, E., Puglia, D., Monti, M., et al.: Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J. Appl. Polym. Sci. 128(5), 3220–3230 (2013)

    Article  Google Scholar 

  11. 11.

    Zuluaga, R., Putaux, J.L., Restrepo, A., et al.: Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14, 585–592 (2007)

    Article  Google Scholar 

  12. 12.

    Kamdem, I., Hiligsmann, S., Vanderghem, C., et al.: Enhanced biogas production during anaerobic digestion of steam-pretreated lignocellulosic biomass from Williams Cavendish banana plants. Waste Biomass Valoriz. 9, 175–185 (2018)

    Article  Google Scholar 

  13. 13.

    FAO. 2020. Banana Market Review: Preliminary Results 2019. Rome. Accessed 03 December 2020.

  14. 14.

    Mueller, S., Weder, C., Foster, E.J.: Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv. 4, 907–915 (2014)

    Article  Google Scholar 

  15. 15.

    Fitri Faradilla, R.H., Lee, G., Rawal, A., et al.: Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose 23, 3023–3037 (2016)

    Article  Google Scholar 

  16. 16.

    Khawas, P., Deka, S.C.: Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatmen. Carbohydr. Polym. 137, 608–616 (2016)

    Article  Google Scholar 

  17. 17.

    Phantong, P., Karnjanakom, S., Reubroycharoen, P., et al.: A facile one-step way fro extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose 24, 2083–2093 (2017)

    Article  Google Scholar 

  18. 18.

    Tibolla, H., Pelissari, F.M., Martins, J.T., et al.: Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hidrocoll. 75, 192–201 (2018)

    Article  Google Scholar 

  19. 19.

    Cherian, B.M., Pothan, L.A., Nguyen-Chung, T., et al.: A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J. Agric. Food Chem. 56(14), 5617–5627 (2008)

    Article  Google Scholar 

  20. 20.

    Deepa, B., Abraham, E., Cherian, B.M., et al.: Structure, morphology and thermal characteristics of banana nanofibers obtained by steam explosion. Bioresour. Technol. 102, 1988–1997 (2011)

    Article  Google Scholar 

  21. 21.

    ISO/TR 18401:2017.: Nanotechnologies—Plain Language Explanation of Selected Terms from the ISO/IEC 80004 Series. Accesed 03 December 2020.

  22. 22

    Chávez-Guerrero, L., Silva-Mendoza, J., Toxqui-Terán, A., et al.: Direct observation of endoglucanase fibrillation and rapid thickness identification of cellulose nanoplatelets using constructive interference. Carbohydr. Polym. 254, 117463 (2020)

    Article  Google Scholar 

  23. 23.

    Chávez-Guerrero, L., Vazquez-Rodriguez, S., Salinas-Montelongo, J.A., et al.: Preparation of all-cellulose composites with optical transparency using the banana pseudostem as a raw material. Cellulose 26(6), 3777–3786 (2019)

    Article  Google Scholar 

  24. 24.

    Segal, L., Creely, J.J., Martin, A.E., et al.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959)

    Article  Google Scholar 

  25. 25.

    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  26. 26.

    Chávez-Guerrero, L., Esneider, M., Bonilla, J., Toxqui-Terán, A.: Eco-friendly extraction of fibrils with hierarchical structure assisted by freeze-drying using agave salmiana leaves as a raw material. Fibers Polym. 21, 66–72 (2020)

    Article  Google Scholar 

  27. 27.

    Alemdar, A., Sain, M., et al.: Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos. Sci. Technol. 68(2), 557–565 (2008)

    Article  Google Scholar 

  28. 28.

    Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., et al.: Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr. Polym. 80(3), 852–859 (2010)

    Article  Google Scholar 

  29. 29.

    Zhang, Y.H., Lynd, L.R.: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88(7), 797–824 (2004)

    Article  Google Scholar 

  30. 30.

    Bondeson, D., Mathew, A., Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171 (2006)

    Article  Google Scholar 

  31. 31.

    Li, J., Nawaz, H., Wu, J., et al.: All-cellulose composites based on the self-reinforced effect. Compos. Commun. 9, 42–53 (2018)

    Article  Google Scholar 

  32. 32.

    Ververis, C., Georghiou, K., Christodoulakis, N., et al.: Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crop. Prod. 19(3), 245–254 (2004)

    Article  Google Scholar 

  33. 33.

    Gindl, W., Keckes, J.: Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos. Sci. Technol. 64(15), 2407–2413 (2004)

    Article  Google Scholar 

  34. 34.

    Eichhorn, S.J., Sirichaisit, J., Young, R.J.: Deformation mechanisms in cellulose fibres, paper and wood. J. Matter. Sci. 36, 3129–3135 (2001)

    Article  Google Scholar 

  35. 35.

    A. Karppinen. Biodegradability of cellulose fibrils. Accessed 27 July 2020.

  36. 36.

    Sothornvit, R., Pitak, N.: Oxygen permeability and mechanical properties of banana films. Food Res. Int. 40(3), 365–370 (2007)

    Article  Google Scholar 

Download references


The authors want to thank Dr. Ophélie Trussart from the Center for Research and Innovation in Aeronautical Engineering (CIIIA) of Universidad Autónoma de Nuevo León (UANL) for the facilities provided for ATR characterization. The authors want to thank the program PAICYT-UANL for the funding provided to develop the present project.

Author information



Corresponding author

Correspondence to L. Chávez-Guerrero.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flores-Jerónimo, G., Silva-Mendoza, J., Morales-San Claudio, P.C. et al. Chemical and Mechanical Properties of Films Made of Cellulose Nanoplatelets and Cellulose Fibers Obtained from Banana Pseudostem. Waste Biomass Valor (2021).

Download citation


  • Two-dimensional nanocellulose
  • Microcrystalline cellulose
  • Thin films
  • Transparent films
  • Biopolymers