Efficient Pretreatment of Waste Protein Recovery from Bovine Bones and Its Underlying Mechanisms

Abstract

To efficiently utilize bone by-products at the industrial level and alleviate the shortage of protein resources, it is important to improve enzymolytic efficiency by developing economical, effective, and eco-friendly pretreatment methods, and to explore the main factor influencing the efficiency of protein extraction and recovery. A comparative analysis was made on the effect of the pretreatments of lipase, high temperature and pressure, and the combination of both. All pretreatments significantly improved the enzymolytic efficiency, while the lipase pretreatment showed the best overall performance. The degree of hydrolysis after three pretreatments was 12.58%, 9.82%, and 11.79%, respectively. Mechanism analysis indicated that the main factor influencing enzymolytic efficiency was lipid content based on the analysis of the physicochemical properties of bones. The enzymolytic efficiency could reach the maximum at 14.15% by decreasing the lipid content to an optimal level of about 5% and changing the surface elemental content of C, N, and O. These results suggest that the pretreatment that efficiently reduced lipid content was an economical and efficient strategy for improving enzymolytic efficiency of bones.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Eastridge, M.L.: Major advances in applied dairy cattle nutrition. J. Dairy. Sci. 89(4), 1311–1323 (2006). https://doi.org/10.3168/jds.S0022-0302(06)72199-3

    Article  Google Scholar 

  2. 2.

    USDA. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1028 (2018)

  3. 3.

    National Bureau of Statistics of China.: China Statistical Yearbook, China Statistics Press. http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm (2017)

  4. 4.

    Decker, E.A., Park, Y.: Healthier meat products as functional foods. Meat. Sci. 86(1), 49–55 (2010). https://doi.org/10.1016/j.meatsci.2010.04.021

    Article  Google Scholar 

  5. 5.

    Handous, N., Gannoun, H., Hamdi, M., Bouallagui, H.: Two-Stage anaerobic digestion of meat processing solid wastes: methane potential improvement with wastewater addition and solid substrate fermentation. Waste Biomass Valoriz. 10(1), 131–142 (2019). https://doi.org/10.1007/s12649-017-0055-2

    Article  Google Scholar 

  6. 6.

    Slorach, P.C., Jeswani, H.K., Cuéllar-Franca, R., Azapagic, A.: Environmental and economic implications of recovering resources from food waste in a circular economy. Sci. Total Environ. 693, 133516 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.322

    Article  Google Scholar 

  7. 7.

    Adeseye, L., Fatimah, A.B., Dzulkifly, H.: Potential of chicken by-products as sources of useful biological resources. Waste Manag. 33(3), 552–565 (2013). https://doi.org/10.1016/j.wasman.2012.08.001

    Article  Google Scholar 

  8. 8.

    Anzani, C., Prandi, B., Tedeschi, T., Baldinelli, C., Sorlini, G., Wierenga, P.A., Dossena, A., Sforza, S.: Degradation of collagen increases nitrogen solubilisation during enzymatic hydrolysis of fleshing meat. Waste Biomass Valoriz. 9, 1113–1119 (2018). https://doi.org/10.1007/s12649-017-9866-4

    Article  Google Scholar 

  9. 9.

    Zhu, G., Zhu, X., Fan, Q., Wan, X.: Recovery of biomass wastes by hydrolysis in sub-critical water. Resour. Conserv. Recycl. 55(4), 409–416 (2011). https://doi.org/10.1016/j.resconrec.2010.12.012

    Article  Google Scholar 

  10. 10.

    Xiao, C., Faddoul, C., Wood, C.: Dietary L-lysine supplementation altered the content of pancreatic polypeptide, enzymes involved in glutamine metabolism, and beta-actin in rats. Amino Acids 50(12), 1729–1737 (2018). https://doi.org/10.1007/s00726-018-2648-x

    Article  Google Scholar 

  11. 11.

    Müller, T.D., Clemmensen, C., Finan, B., DiMarchi, R.D., Tschöp, M.H., Birgitte, H.: Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol. Rev. 70(4), 712–746 (2018). https://doi.org/10.1124/pr.117.014803

    Article  Google Scholar 

  12. 12.

    Chamberlain, J.J., Kalyani, R.R., Leal, S., Rhinehart, A.S., Shubrook, J.H., Skolnik, N., Herman, W.H.: Treatment of type 1 diabetes: synopsis of the 2017 American diabetes association standards of medical care in diabetes. Ann. Intern. Med. 167(7), 493 (2017). https://doi.org/10.7326/M17-1259

    Article  Google Scholar 

  13. 13.

    De Alencare Silva, T., Braga, M.C., Santana, G.O.S., Saldanha-Araujo, F., Pogue, R., Dias, S.C., Franco, O.L., de Carvalho, J.L.: Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol. Adv. 36(8), 2019–2031 (2018). https://doi.org/10.1016/j.biotechadv.2018.08.005

    Article  Google Scholar 

  14. 14.

    Piazza, G.J., Garcia, R.A.: Proteins and peptides as renewable flocculants. Bioresour. Technol. 101(15), 5759–5766 (2010). https://doi.org/10.1016/j.biortech.2010.02.073

    Article  Google Scholar 

  15. 15.

    Piazza, G.J., Mcaloon, A.J., Garcia, R.A.: A renewable flocculant from a poultry slaughterhouse waste and preliminary estimate of production costs. Resour. Conserv. Recycl. 55(9–10), 842–848 (2011). https://doi.org/10.1016/j.resconrec.2011.04.004

    Article  Google Scholar 

  16. 16.

    Mekonnen, T.H., Mussone, P.G., Choi, P., Bressler, D.C.: Development of proteinaceous plywood adhesive and optimization of its lap shear strength. Macromol. Mater. Eng. 300(2), 198–209 (2015). https://doi.org/10.1002/mame.201400199

    Article  Google Scholar 

  17. 17.

    Mekonnen, T.H., Mussone, P.G., Alemaskin, K., Sopkow, L., Wolodko, J., Choi, P., Bressler, D.C.: Biocomposites from hydrolyzed waste proteinaceous biomass: mechanical, thermal and moisture absorption performances. J. Mater. Chem. A 1(42), 13186–13196 (2013). https://doi.org/10.1039/c3ta13560h

    Article  Google Scholar 

  18. 18.

    Langmaier, F., Mokrejs, P., Kolomaznik, K., Mladek, M.: Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag. 28(3), 549–556 (2008). https://doi.org/10.1016/j.wasman.2007.02.003

    Article  Google Scholar 

  19. 19.

    Sartore, L., Schettini, E., de Palma, L., Brunetti, G., Cocozza, C., Vox, G.: Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system. Sci. Total Environ. 645, 1221–1229 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.259

    Article  Google Scholar 

  20. 20.

    Alvarez-Castillo, E., Bengoechea, C., Guerrero, A.: Composites from by-products of the food industry for the development of superabsorbent biomaterials. Food. Bioprod. Process. 119, 296–305 (2020). https://doi.org/10.1016/j.fbp.2019.11.009

    Article  Google Scholar 

  21. 21.

    Zhang, Y., Olsen, K., Grossi, A., Otte, J.: Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chem. 141(3), 2343–2354 (2013). https://doi.org/10.1016/j.foodchem.2013.05.058

    Article  Google Scholar 

  22. 22.

    Dong, X., Li, X., Zhang, C., Wang, J., Tang, C., Sun, H., Jia, W., Li, Y., Chen, L.: Development of a novel method for hot-pressure extraction of protein from chicken bone and the effect of enzymatic hydrolysis on the extracts. Food Chem. 157, 339–346 (2014). https://doi.org/10.1016/j.foodchem.2014.02.043

    Article  Google Scholar 

  23. 23.

    Kangsanant, S., Murkovic, M., Thongraung, C.: Antioxidant and nitric oxide inhibitory activities of tilapia (Oreochromis niloticus) protein hydrolysate: effect of ultrasonic pretreatment and ultrasonic-assisted enzymatic hydrolysis. Int. J. Food Sci. Technol. 49(8), 1932–1938 (2014). https://doi.org/10.1111/ijfs.12551

    Article  Google Scholar 

  24. 24.

    Song, S., Li, S., Fan, L., Hayat, K., Xiao, Z., Chen, L., Tang, Q.: A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction. Food Chem. 208, 81–88 (2016). https://doi.org/10.1016/j.foodchem.2016.03.062

    Article  Google Scholar 

  25. 25.

    Elizabeth, N., Jones, O., Kim, Y.H.B., San Martin-Gonzalez, F., Liceaga, A.M.: Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fish. Sci. 83(2), 317–331 (2017). https://doi.org/10.1007/s12562-017-1067-3

    Article  Google Scholar 

  26. 26.

    Herrera, J.M., Sanchez-Chino, X., Corzo-Rios, L.J., Davila-Ortiz, G., Martinez, C.J.: Comparative extraction of Jatropha curcas L lipids by conventional and enzymatic methods. Food Bioprod. Process. 118, 32–39 (2019). https://doi.org/10.1016/j.fbp.2019.08.013

    Article  Google Scholar 

  27. 27.

    Li, S., Song, S., Xiao, Z., Niu, Y., Tang, Q., Fan, L.: Influence of lipase pretreatment on beef bone protein hydrolysate. J. Chin. Inst. Food Sci. Technol. 16, 130–136 (2016). https://doi.org/10.16429/j.1009-7848.2016.04

    Article  Google Scholar 

  28. 28.

    Yao, Y., Wang, M., Liu, Y., Han, L., Liu, X.: Insights into the improvement of the enzymatic hydrolysis of bovine bone protein using lipase pretreatment. Food Chem. 302, 125199 (2020). https://doi.org/10.1016/j.foodchem.2019.125199

    Article  Google Scholar 

  29. 29.

    Song, N., Tan, C., Huang, M., Liu, P., Eric, K., Zhang, X., Xia, S., Jia, C.: Transglutaminase cross-linking effect on sensory characteristics and antioxidant activities of Maillard reaction products from soybean protein hydrolysates. Food Chem. 136(1), 144–151 (2013). https://doi.org/10.1016/j.foodchem.2012.07.100

    Article  Google Scholar 

  30. 30.

    Sedmak, J.J., Grossberg, S.E.: A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 79(1–2), 544–552 (1997). https://doi.org/10.1016/0003-2697(77)90428-6

    Article  Google Scholar 

  31. 31.

    Wang, B., Meng, T., Ma, H., Zhang, Y., Li, Y., Jin, J., Ye, X.: Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase. Ultrason. Sonochem. 32, 307–313 (2016). https://doi.org/10.1016/j.ultsonch.2016.03.023

    Article  Google Scholar 

  32. 32.

    Buckow, R., Sikes, A., Tume, R.: Effect of high pressure on physicochemical properties of meat. Crit. Rev. Food Sci. Nutr. 53(7), 770–786 (2013). https://doi.org/10.1080/10408398.2011.560296

    Article  Google Scholar 

  33. 33.

    Cheftel, J.C., Culioli, J.: Effects of high pressure on meat: a review. Meat Sci. 46(3), 211–236 (1997). https://doi.org/10.1016/S0309-1740(97)00017-X

    Article  Google Scholar 

  34. 34.

    Duranton, F., Marée, E., Simonin, H., Chéret, R., de Lamballerie, M.: Effect of high pressure-high temperature process on meat product quality. High Pressure Res. 31(1), 163–167 (2011). https://doi.org/10.1080/08957959.2010.541242

    Article  Google Scholar 

  35. 35.

    Zhang, Y., Wang, X., Wang, W., Zhang, J.: High static pressure and enzymatic hydrolysis-assisted preparation of super-fine bone powder. Mod. Food Sci. Technol. 30(10), 172–175 (2014). https://doi.org/10.13982/j.mfst.1673-9078.2014.10.029

    Article  Google Scholar 

  36. 36.

    Shen, X., Huang, G., Yang, Z., Han, L.: Compositional characteristics and energy potential of Chinese animal manure by type and as a whole. Appl. Energy 160, 108–119 (2015). https://doi.org/10.1016/j.apenergy.2015.09.034

    Article  Google Scholar 

  37. 37.

    Lee, S.Y., Hur, S.J.: Neuroprotective effects of different molecular weight peptide fractions obtained from beef by hydrolysis with commercial enzymes in SH-SY5Y cells. Food Res. Int. 121, 176–184 (2019). https://doi.org/10.1016/j.foodres.2019.03.039

    Article  Google Scholar 

  38. 38.

    Espinosa-Pardo, F.A., Savoire, R., Subra-Paternault, P., Harscoat-Schiavo, C.: Oil and protein recovery from corn germ: extraction yield, composition and protein functionality. Food Bioprod. Process. 120, 131–142 (2020). https://doi.org/10.1016/j.fbp.2020.01.002

    Article  Google Scholar 

  39. 39.

    Leal, M.C., Freire, D.M., Cammarota, M.C., Sant’Anna, G.L., Jr.: Effect of enzymatic hydrolysis on anaerobic treatment of dairy wastewater. Process Biochem. 41(5), 1173–1178 (2006). https://doi.org/10.1016/j.procbio.2005.12.014

    Article  Google Scholar 

  40. 40.

    Liu, Y., Zhang, Y., Jiang, H., Xia, Y.: Effect of lipase pretreatment on surface properties of wheat straw fiber. J. Northeast For. Univ. 37(8), 46–47 (2009). https://doi.org/10.13759/j.cnki.dlxb.2009.08

    Article  Google Scholar 

  41. 41.

    Devi, A.F., Buckow, R., Singh, T., Hemar, Y., Kasapis, S.: Colour change and proteolysis of skim milk during high pressure thermal-processing. J. Food Eng. 147, 102–110 (2015). https://doi.org/10.1016/j.jfoodeng.2014.09.017

    Article  Google Scholar 

  42. 42.

    Jiang, N., Xu, B., Zhao, L., Huang, M., Zhou, G.: Effects of high-temperature-short time (HTST) drying process on proteolysis, lipid oxidation and sensory attributes of Chinese dry-cured chicken. CyTA J. Food. 14(3), 440–448 (2016). https://doi.org/10.1080/19476337.2015.1124291

    Article  Google Scholar 

  43. 43.

    Gomes, D.R.S., Papa, L.G., Cichello, G.C.V., Belançon, D., Pozzi, E.G., Balieiro, J.C.C., Monterrey-Quintero, E.S., Tommaso, G.: Effect of enzymatic pretreatment and increasing the organic loading rate of lipid-rich wastewater treated in a hybrid UASB reactor. Desalination 279(1–3), 96–103 (2011). https://doi.org/10.1016/j.desal.2011.05.067

    Article  Google Scholar 

  44. 44.

    Mendes, A.A., Pereira, E.B., de Castro, H.F.: Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem. Eng. J. 32(3), 185–190 (2006). https://doi.org/10.1016/j.bej.2006.09.021

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Agriculture Research System (Grant CARS-36); National Key R&D Program of China (Grant 2016YFE0112800); and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant IRT-17R105).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xian Liu.

Ethics declarations

Conflict of interest

There is no conflict of interest from authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Yuan, X., Wang, M. et al. Efficient Pretreatment of Waste Protein Recovery from Bovine Bones and Its Underlying Mechanisms. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-021-01372-7

Download citation

Keywords

  • Bone waste proteins
  • Enzymolytic efficiency
  • Efficient pretreatment
  • Factor influencing
  • Lipid content
  • Surface structure of bones