Keratinolytic Enzyme from a Thermotolerant Isolate Bacillus sp. NDS-10: An Efficient Green Biocatalyst for Poultry Waste Management, Laundry and Hide-dehairing Applications


Background: The enzymatic degradation of keratin-rich wastes by a keratinolytic microorganism is a preferable and eco-friendly biotechnological alternative for the valorization of these compounds. Despite their recalcitrant behavior, hydrolysis of these wastes can be efficiently done by microbial proteolytic enzyme known as keratinase. Objective: In the present study, a potent keratinolytic bacterial strain with a great potential of feathers’ degradation was isolated and identified by 16S rDNA sequencing as Bacillus sp. NDS-10. Results: After optimization, high-yield of extracellular keratinase (92 U mL−1) and bioconversion of feathers (97%) were achieved in M9 medium (pH 7.0) containing 0.8% (w/v) native chicken feathers after 20 h incubation at 45 °C. The crude keratinase exhibited maximal activity at pH 7.0–8.0 (Tris-Cl buffer) and 65 °C; and showed great stability over a range of pH (6.0–10.0) and temperature (20-60°C) for 6 h. No inhibitory influence was observed with various chemical modulators, commercial detergents and salt but phenylmethanesulfonyl fluoride (PMSF) completely repressed the keratinolytic activity of enzyme. The enzyme effectively dehaired goat hide after 6 h without any damage and completely removed the blood-stain after 5 min incubation. Conclusion: These favorable features indicated that this keratinolytic enzyme seems to be an efficient and eco-friendly candidate for keratin-waste management, detergents formulations and hide-depilation application.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Martinez, J.P.D.O., Cai, G., Nachtschatt, M., Navone, L., Zhang, Z., Robins, K., Speight, R.: Challenges and opportunities in identifying and characterising keratinases for value-added peptide production. Catalysts (2020).

    Article  Google Scholar 

  2. 2.

    Hassan, M.A., Abol-Fotouh, D., Omer, A.M., Tamer, T.M., Abbas, E.: Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: a review. Int. J. Biol. Macromol. 1(154), 567–583 (2020).

    Article  Google Scholar 

  3. 3.

    Ningthoujam, D.S., Tamreihao, K., Mukherjee, S., Khunjamayum, R., Devi, L.J., Asem, R.S.: Keratinaceous wastes and their valorization through keratinolytic microorganisms in keratin. IntechOpen (2018).

    Article  Google Scholar 

  4. 4.

    Bhari, R., Kaur, M., Singh, R.S.: Thermostable and halotolerant keratinase from Bacillus aerius NSMk2 with remarkable dehairing and laundary applications. J. Basic Microbiol. 59(6), 555–568 (2019).

    Article  Google Scholar 

  5. 5.

    Tamreihao, K., Mukherjee, S., Khunjamayum, R., Devi, L.J., Asem, R.S., Ningthoujam, D.S.: Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production. J. Basic Microbiol. 59, 4–13 (2019).

    Article  Google Scholar 

  6. 6.

    Jagadeesan, Y., Meenakshisundaram, S., Saravanan, V., Balaiah, A.: Sustainable production, biochemical and molecular characterization of thermo-and-solvent stable alkaline serine keratinase from novel Bacillus pumilus AR57 for promising poultry solid waste management. Int. J. Biol. Macromol. 15(163), 135–146 (2020).

    Article  Google Scholar 

  7. 7.

    Li, Q.: Progress in microbial degradation of feather waste. Front. Microbiol. 10, 2717 (2019).

    Article  Google Scholar 

  8. 8.

    Sahni, N., Sahota, P.P., Phutela, U.G.: Bacterial keratinases and their prospective applications: a review. Int. J. Curr. Microbiol. Appl. Sci. 4(6), 768–783 (2015)

    Google Scholar 

  9. 9.

    Peng, Z., Zhang, J., Du, G., Chen, J.: Keratin waste recycling based on microbial degradation: mechanisms and prospects. ACS Sustain. Chem. Eng. 7(11), 9727–9736 (2019).

    Article  Google Scholar 

  10. 10.

    Wu, W.L., Chen, M.Y., Tu, I.F., Lin, Y.C., Eswarkumar, N., Chen, M.Y., Ho, M.C., Wu, S.H.: The discovery of novel heat-stable keratinases from Meiothermus taiwanensis WR-220 and other extremophiles. Sci. Rep. 7(1), 1–12 (2017).

    Article  Google Scholar 

  11. 11.

    Brandelli, A., Daroit, D.J., Riffel, A.: Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85, 1735–1750 (2010).

    Article  Google Scholar 

  12. 12.

    Vidmar, B., Vodovnik, M.: Microbial keratinases: enzymes with promising biotechnological applications. Food Technol. Biotechnol. 56, 312–328 (2018).

    Article  Google Scholar 

  13. 13.

    Nnolim, N.E., Nwodo, U.U.: Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: keratinolytic enzyme characterization. BMC Biotechnol. 20, 65 (2020).

    Article  Google Scholar 

  14. 14.

    Bhange, K., Chaturvedi, V., Bhatt, R.: Ameliorating effects of chicken feathers in plant growth promotion activity by a keratinolytic strain of Bacillus subtilis PF1. Bioresour. Bioprocess 3, 13 (2016).

    Article  Google Scholar 

  15. 15.

    Adetunji, C.O., Makanjuola, O.R., Arowora, K.A., Afolayan, S.S., Adetunji, J.B.: Production and application of keratin-based organic fertilizer from microbially hydrolyzed feathers to cowpea (Vignaunguiculata). Int. J. Sci. Eng. Res. 3(12), 164–172 (2012)

    Google Scholar 

  16. 16.

    Hamiche, S., Mechri, S., Khelouia, L., Annane, R., Hattab, M.E., Badis, A., Jaouadi, B.: Purification and biochemical characterization of two keratinases from Bacillus amyloliquefaciens S13 isolated from marine brown alga Zonaria tournefortii with potential keratin-biodegradation and hide-unhairing activities. Int. J. Biol. Macromol. 122, 758–769 (2019).

    Article  Google Scholar 

  17. 17.

    Akhter, M., Marzan, L.W., Akter, Y., Shimizu, K.: Microbial bioremediation of feather waste for keratinase production: an outstanding solution for leather dehairing in tanneries. Microbiol. Insights 13, 1–12 (2020).

    Article  Google Scholar 

  18. 18.

    Roy, S., Nagarchi, L., Das, I., Mangalam Achuthananthan, J., Krishnamurthy, S.: Cytotoxicity, genotoxicity, and phytotoxicity of tannery effluent discharged into Palar River Basin, Tamil Nadu. India J. Toxicol. 2015, 504360 (2015).

    Article  Google Scholar 

  19. 19.

    Haq, I.U., Akram, F., Jabbar, Z.: Keratinolytic enzyme-mediated biodegradation of recalcitrant poultry feathers waste by newly isolated Bacillus sp. NKSP-7 under submerged fermentation. Folia Microbiol. (2020).

    Article  Google Scholar 

  20. 20.

    Brandelli, A.: Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. Electron J. Biotechnol. 8, 0717–3458 (2005).

    Article  Google Scholar 

  21. 21.

    Raju, E.V.N., Divakar, G.: Screening and isolation of keratinase producing bacteria from poultry waste. Inter. J. Pharm. Res. Allied Sci. 2, 70–74 (2013)

    Google Scholar 

  22. 22.

    Łaba, W., Żarowska, B., Chorążyk, D., Pudło, A., Piegza, M., Kancelista, A., Kopeć, W.: New keratinolytic bacteria in valorization of chicken feather waste. AMB Express 8(1), 9 (2018)

    Article  Google Scholar 

  23. 23.

    Kurane, A.B., Attar, Y.C.: Screening and isolation of keratinase producing microorganisms. Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 5, 489–495 (2017)

    Google Scholar 

  24. 24.

    Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Willaims, S.T.: Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, Maryland, USA (1994)

    Google Scholar 

  25. 25.

    Basar, B., Shamzi, M.M., Rosfarizan, M., Puspaningsih, N.N.T., Ariff, A.B.: Enhanced production of thermophilic xylanase by recombinant Escherichia coli DH5α through optimization of medium and dissolved oxygen level. Int. J. Agri. Biol. 12, 321–328 (2010)

    Google Scholar 

  26. 26.

    Cai, C.G., Chen, J.S., Qi, J.J., Yin, Y., Zheng, X.D.: Purification and characterization of keratinase from a new Bacillus subtilis strain. J. Zhejiang. Uni. Sci. B 9, 713–720 (2008).

    Article  Google Scholar 

  27. 27.

    Joshi, S.G., Tejashwini, M.M., Revati, N., Sridevi, R., Roma, D.: Isolation, identification and characterization of a feather degrading bacterium. Int. J. Poul Sci. 6, 689–693 (2008)

    Article  Google Scholar 

  28. 28.

    Sekar, V., Kannan, M., Ganesan, R., Dheeba, B., Sivakumar, N., Kannan, K.: Isolation and screening of keratinolytic bacteria from feather dumping soil in and around Cuddalore and Villupuram, Tamil Nadu. Acad. Sci. India Sect. B Biol. Sci. 86, 567–575 (2016).

    Article  Google Scholar 

  29. 29.

    Agrawal, B., Dalal, M.: Screening and characterization of keratinase enzyme obtained from keratin degrading microorganism isolated from Sanjan poultry waste dumping soil. Eur. Acad. Res. 2, 13986–13994 (2015)

    Google Scholar 

  30. 30.

    Bhari, R., Manpreet, K., Sarup, S.R., Ashok, P., Christian, L.: Bioconversion of chicken feathers by Bacillus aerius NSMk2: a potential approach in poultry waste management. Bioresour. Technol. Rep. 3, 224–230 (2018).

    Article  Google Scholar 

  31. 31.

    Suharti, S., Riesmi, M.T., Hidayati, A., Zuhriyah, U.F., Wonorahardjo, S., Susanti, E.: Enzymatic dehairing of goat skin using keratinase from Bacillus sp. MD24, A newly isolated soil bacterium. Pertanika. J. Trop. Agric. Sci. 41, 1449–1461 (2018)

    Google Scholar 

  32. 32.

    Saber, W.I.A., El-Metwally, M.M., El-Hersh, M.S.: Keratinase production and biodegradation of some keratinous wastes by Alternaria tenuissimaand Aspergillus nidulans. Res. J. Microbiol. 5(1), 21–35 (2010).

    Article  Google Scholar 

  33. 33.

    Barman, N.C., Zohora, F.T., Das, K.C., Mowla, M.G., Banu, N.A., Salimullah, M., Hashem, A.: Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Express 7, 181 (2017).

    Article  Google Scholar 

  34. 34.

    Reddy, M.R., Reddy, K.S., Chouhan, Y.R., Bee, H., Reddy, G.: Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive. Bioresour. Technol. 243, 254–263 (2017).

    Article  Google Scholar 

  35. 35.

    Abdel-Fattah, A.M., El-Gamal, M.S., Ismail, S.A., Emran, M.A., Hashem, A.M.: Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. J. Genet. Eng. Biotech. 16, 311–318 (2018).

    Article  Google Scholar 

  36. 36.

    Lo, W.H., Too, J.R., Wu, J.Y.: Production of keratinolytic enzyme by an indigenous feather–degrading strain Bacillus cereus Wu2. J. Biosci. Bioeng. 114, 640–647 (2012).

    Article  Google Scholar 

  37. 37.

    Ferrareze, P.A.G., Correa, A.P.F., Brandelli, A.: Purification and characterization of a keratinolytic protease produced by probiotic Bacillus subtilis. Biocatal. Agric. Biotechnol. 7, 102–109 (2016).

    Article  Google Scholar 

  38. 38.

    Lateef, A., Adelere, I.A., Gueguim-Kana, E.B.: Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications. Biotechnol. Biotechnol. Equip. 29, 54–63 (2015).

    Article  Google Scholar 

  39. 39.

    Saibabu, V., Niyonzima, F.N., More, S.S.: Isolation, partial purification and characterization of keratinase from Bacillus megaterium. Inter. Res. J. Biol. Sci. 2, 13–20 (2013)

    Google Scholar 

  40. 40.

    Ghasemi, Y., Shahbazi, M., Rasoul-Amini, S., Kargar, M., Azam, S., Kazemi, A., Montazeri-Najafabady, N.: Identification and characterization of feather-degrading bacteria from keratin-rich wastes. Ann. Microbiol. 62, 737–744 (2012).

    Article  Google Scholar 

  41. 41.

    Gegeckas, A., Gudiukaite, R., Citavicius, D.: Keratinolytic proteinase from Bacillus thuringiensis AD-12. Int. J. Biol. Macromol. 69, 46–51 (2014)

    Article  Google Scholar 

Download references


This work was supported by a Grant No. 5-9/PAS/727 from Pakistan Academy of Science, Islamabad, Pakistan.

Author information




FA wrote the manuscript, carried out experiments, analyzed the data and performed statistical analysis. IH: designed and conceptualized the study and supervised all work. AKH: conducted research work. ZA: collected soil sample and performed isolation and screening. ZJ: as a research assistant carried out some experiments work. IMB: assisted in some research work. RA: assisted in some research work.

Corresponding author

Correspondence to Fatima Akram.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests and have no conflict of interest. We assure the integrity and quality of our research work. It is also stated that there is no plagiarism in this work and all points taken from other authors are well cited in the text. This study is completely independent and impartial.

Research Involving Human and Animal Rights

N/A. This research did not involve human participants and/or animals.

Informed Consent

N/A. This research did not involve human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akram, F., Haq, I.u., Hayat, A.K. et al. Keratinolytic Enzyme from a Thermotolerant Isolate Bacillus sp. NDS-10: An Efficient Green Biocatalyst for Poultry Waste Management, Laundry and Hide-dehairing Applications. Waste Biomass Valor (2021).

Download citation


  • Biodegradation
  • Dehairing
  • Keratinase
  • Optimization
  • Bacillus sp. NDS-10