Linking Phosphorus Extraction from Different Types of Biomass Incineration Ash to Ash Mineralogy, Ash Composition and Chemical Characteristics of Various Types of Extraction Liquids

Abstract

Phosphorus (P) rich ash from biomass incineration is a potential promising alternative for non-renewable phosphate rock. This study considered the P recovery potential of poultry manure ash, sewage sludge ash and meat and bone meal ash through wet chemical extraction. X-ray diffraction analysis showed that these three ash types had a distinct P mineralogy. If inorganic acids were used for the extraction, the P extraction efficiency was not or only slightly affected by the P mineralogy. Contrarily, for the organic acids, alkaline extraction liquid and chelating agents considered, the P extraction efficiency was highly affected by the P mineralogy, and was also affected by the elemental composition of the ash and/or the chemical characteristics of the extraction liquids. Alkaline extraction liquids showed in general low heavy metal co-extraction, in contrast to the inorganic acids. From an economic point of view, of all extraction liquids considered, sulfuric acid was the most interesting to extract P from all three ash types. Oxalic acid could be a more sustainable option for P extraction from sewage sludge ash. In addition, extraction of poultry manure ash with ethylenediaminetetraacetic acid showed a relatively high P extraction efficiency combined with relatively low heavy metal co-extraction.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of Data and Materials

Research data is stored and documented in a safe, secure and sustainable way and can be retrieved or accessed when needed.

Notes

  1. 1.

    Visual MINTEQ databases do not contain data on the chlorapatite (Ca5(PO4)3Cl) and fluorapatite (Ca5(PO4)3F) solubility. However, in the literature, it was found that for the ash types studied, apatite mainly occurs in the form of hydroxyapatite and only to a lesser extent in the form of chlorapatite and fluorapatite [19, 20, 26, 34]. Therefore, the conclusions in this paragraph are only based on the hydroxyapatite solubility.

Abbreviations

MBM:

Meat and bone meal

MBMA:

Meat and bone meal ash

PM:

Poultry manure

PMA:

Poultry manure ash

SS:

Sewage sludge

SSA:

Sewage sludge ash

References

  1. 1.

    U.S. Geological Survey (USGS): Phosphate rock. In: Mineral Commodity Summaries 2020, pp. 122–123. U.S. Geological Survey, Washington, D.C. (2020). https://doi.org/10.3133/mcs2020

    Google Scholar 

  2. 2.

    Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., et al.: Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit. Rev. Environ. Sci. Technol. 45(4), 336–384 (2015). https://doi.org/10.1080/10643389.2013.866531

    Article  Google Scholar 

  3. 3.

    Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., et al.: Total value of phosphorus recovery. Environ. Sci. Technol. 50(13), 6606–6620 (2016). https://doi.org/10.1021/acs.est.6b01239

    Article  Google Scholar 

  4. 4.

    Cordell, D., White, S.: Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security. Agronomy 3(1), 86–116 (2013). https://doi.org/10.3390/agronomy3010086

    Article  Google Scholar 

  5. 5.

    Takhim, M., Sonveaux, M., de Ruiter, R.: The Ecophos process: highest quality market products out of low-grade phosphate rock and sewage sludge ash. In: Ohtake, H., Tsuneda, S. (eds.) Phosphorus Recovery and Recycling, pp. 209–219. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8031-9_14

    Google Scholar 

  6. 6.

    Nättorp, A., Kabbe, C., Matsubae, K., Ohtake, H.: Development of phosphorus recycling in Europe and Japan. In: Ohtake, H., Tsuneda, S. (eds.) Phosphorus Recovery and Recycling, pp. 3–27. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8031-9_1

    Google Scholar 

  7. 7.

    Atienza-Martínez, M., Gea, G., Arauzo, J., Kersten, S.R.A., Kootstra, A.M.J.: Phosphorus recovery from sewage sludge char ash. Biomass Bioenerg. 65, 42–50 (2014). https://doi.org/10.1016/j.biombioe.2014.03.058

    Article  Google Scholar 

  8. 8.

    Donatello, S., Cheeseman, C.R.: Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag. 33(11), 2328–2340 (2013). https://doi.org/10.1016/j.wasman.2013.05.024

    Article  Google Scholar 

  9. 9.

    Liang, S., Chen, H., Zeng, X., Li, Z., Yu, W., Xiao, K., et al.: A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash. Water Res. 159, 242–251 (2019). https://doi.org/10.1016/j.watres.2019.05.022

    Article  Google Scholar 

  10. 10.

    Adam, C., Peplinski, B., Michaelis, M., Kley, G., Simon, F.-G.: Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag. 29(3), 1122–1128 (2009). https://doi.org/10.1016/j.wasman.2008.09.011

    Article  Google Scholar 

  11. 11.

    Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P.: The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). J. Hazard. Mater. 151(1), 96–102 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.056

    Article  Google Scholar 

  12. 12.

    Kootstra, A.M.J., Brilman, D.W.F., Kersten, S.R.A.: Dissolution of phosphate from pig manure ash using organic and mineral acids. Waste Manag. 88, 141–146 (2019). https://doi.org/10.1016/j.wasman.2019.03.038

    Article  Google Scholar 

  13. 13.

    Langeveld, K.: Phosphorus recovery into fertilizers and industrial products by ICL in Europe. In: Ohtake, H., Tsuneda, S. (eds.) Phosphorus Recovery and Recycling, pp. 235–252. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8031-9_16

    Google Scholar 

  14. 14.

    Nusselder, S., de Graaff, L.G., Odegard, I.Y.R., Vandecasteele, C., Croezen, H.J.: Life cycle assessment and nutrient balance for five different treatment methods for poultry litter. J. Clean. Prod. 267, 121862 (2020). https://doi.org/10.1016/j.jclepro.2020.121862

    Article  Google Scholar 

  15. 15.

    Komiyama, T., Kobayashi, A., Yahagi, M.: The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15, 106–110 (2013). https://doi.org/10.1007/s10163-012-0089-2

    Article  Google Scholar 

  16. 16.

    Leng, L., Bogush, A.A., Roy, A., Stegemann, J.A.: Characterisation of ashes from waste biomass power plants and phosphorus recovery. Sci. Total Environ. 690, 573–583 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.312

    Article  Google Scholar 

  17. 17.

    Billen, P., Costa, J., Van der Aa, L., Van Caneghem, J., Vandecasteele, C.: Electricity from poultry manure: a cleaner alternative to direct land application. J. Clean. Prod. 96, 467–475 (2015). https://doi.org/10.1016/j.jclepro.2014.04.016

    Article  Google Scholar 

  18. 18.

    Luyckx, L., de Leeuw, G.H.J., Van Caneghem, J.: Characterization of poultry litter ash in view of its valorization. Waste Biomass Valoriz. 11, 5333–5348 (2020). https://doi.org/10.1007/s12649-019-00750-6

    Article  Google Scholar 

  19. 19.

    Coutand, M., Cyr, M., Deydier, E., Guilet, R., Clastres, P.: Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications. J. Hazard. Mater. 150(3), 522–532 (2008). https://doi.org/10.1016/j.jhazmat.2007.04.133

    Article  Google Scholar 

  20. 20.

    Deydier, E., Guilet, R., Sarda, S., Sharrock, P.: Physical and chemical characterisation of crude meat and bone meal combustion residue: “Waste or raw material?” J. Hazard. Mater. 121(1–3), 141–148 (2005). https://doi.org/10.1016/j.jhazmat.2005.02.003

    Article  Google Scholar 

  21. 21.

    Cohen, Y.: Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid. Environ. Technol. 30(11), 1215–1226 (2009). https://doi.org/10.1080/09593330903213879

    Article  Google Scholar 

  22. 22.

    Fang, L., Li, J., Guo, M.Z., Cheeseman, C.R., Tsang, D.C.W., Donatello, S., Poon, C.S.: Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere 193, 278–287 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.023

    Article  Google Scholar 

  23. 23.

    Sarabèr, A.J.: Co-combustion and its impact on fly ash quality; Full-scale experiments. Fuel Process. Technol. 128, 68–82 (2014). https://doi.org/10.1016/j.fuproc.2014.06.026

    Article  Google Scholar 

  24. 24.

    European Sustainable Phosphorus Platform (ESPP). ESPP phosphorus fact sheet. Retrieved from https://phosphorusplatform.eu/images/download/ESPP-Phosphorus-fact-sheet-v21-4-19.pdf (2019)

  25. 25.

    Donatello, S., Tong, D., Cheeseman, C.R.: Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Manag. 30(8–9), 1634–1642 (2010). https://doi.org/10.1016/j.wasman.2010.04.009

    Article  Google Scholar 

  26. 26.

    Kaikake, K., Sekito, T., Dote, Y.: Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash. Waste Manag. 29(3), 1084–1088 (2009). https://doi.org/10.1016/j.wasman.2008.09.008

    Article  Google Scholar 

  27. 27.

    Ekpo, U., Ross, A.B., Camargo-Valero, M.A., Fletcher, L.A.: Influence of pH on hydrothermal treatment of swine manure: impact on extraction of nitrogen and phosphorus in process water. Bioresour. Technol. 214, 637–644 (2016). https://doi.org/10.1016/j.biortech.2016.05.012

    Article  Google Scholar 

  28. 28.

    Petzet, S., Peplinski, B., Cornel, P.: On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res. 46(12), 3769–3780 (2012). https://doi.org/10.1016/j.watres.2012.03.068

    Article  Google Scholar 

  29. 29.

    Darwish, M., Aris, A., Puteh, M.H., Jusoh, M.N.H., Kadir, A.A.: Waste bones ash as an alternative source of P for struvite precipitation. J. Environ. Manag. 203(2), 861–866 (2017). https://doi.org/10.1016/j.jenvman.2016.02.033

    Article  Google Scholar 

  30. 30.

    Franz, M.: Phosphate fertilizer from sewage sludge ash (SSA). Waste Manag. 28(10), 1809–1818 (2008). https://doi.org/10.1016/j.wasman.2007.08.011

    Article  Google Scholar 

  31. 31.

    Schaum, C., Cornel, P., Jardin, N.: Phosphorus recovery from sewage sludge ash—a wet chemical approach. In: Proceeding of the IWA Conference, pp. 583–590, June 24–27. Moncton, Canada (2007)

  32. 32.

    Xu, H., He, P., Gu, W., Wang, G., Shao, L.: Recovery of phosphorus as struvite from sewage sludge ash. J. Environ. Sci. 24(8), 1533–1538 (2012). https://doi.org/10.1016/S1001-0742(11)60969-8

    Article  Google Scholar 

  33. 33.

    Bogush, A.A., Stegemann, J.A., Williams, R., Wood, I.G.: Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching. Fuel 211, 712–725 (2018). https://doi.org/10.1016/j.fuel.2017.09.103

    Article  Google Scholar 

  34. 34.

    Kratz, S., Vogel, C., Adam, C.: Agronomic performance of P recycling fertilizers and methods to predict it: a review. Nutr. Cycl. Agroecosyst. 115, 1–39 (2019). https://doi.org/10.1007/s10705-019-10010-7

    Article  Google Scholar 

  35. 35.

    EMIS. CMA/2/II/A.3: Ontsluitingsmethode voor de bepaling van elementen in bodem, vaste en pasteuze materialen. Belgisch Staatsblad (2016)

  36. 36.

    European Committee for Standardization. EN 13656:2002 Characterization of waste—microwave assisted digestion with hydrofluoric (HF), nitric (HNO3) and hydrochloric (HCl) acid mixture for subsequent determination of elements (2002)

  37. 37.

    Azuara, M., Kersten, S.R.A., Kootstra, A.M.J.: Recycling phosphorus by fast pyrolysis of pig manure: concentration and extraction of phosphorus combined with formation of value-added pyrolysis products. Biomass Bioenerg. 49, 171–180 (2013). https://doi.org/10.1016/j.biombioe.2012.12.010

    Article  Google Scholar 

  38. 38.

    Luyckx, L.: Fosforherwinning uit pluimveemestverbrandingsassen en uit beendermeel. Masterproef ingediend tot het behalen van de graad van Master of Science in de Industriële Wetenschappen: Chemie: Sustainable Process and Materials Engineering, Faculteit Industriële Ingenieurswetenschappen, Campus Groep T, KU Leuven (2016)

  39. 39.

    Wang, Q., Li, J., Tang, P., Fang, L., Poon, C.S.: Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. J. Clean. Prod. 181, 717–725 (2018). https://doi.org/10.1016/j.jclepro.2018.01.254

    Article  Google Scholar 

  40. 40.

    Biswas, B.K., Inoue, K., Harada, H., Ohto, K., Kawakita, H.: Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. J. Environ. Sci. 21(12), 1753–1760 (2009). https://doi.org/10.1016/S1001-0742(08)62484-5

    Article  Google Scholar 

  41. 41.

    Li, J., Chen, Z., Wang, Q., Fang, L., Xue, Q., Cheeseman, C.R., et al.: Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus. Waste Manag. 74, 404–412 (2018). https://doi.org/10.1016/j.wasman.2018.01.007

    Article  Google Scholar 

  42. 42.

    Szögi, A.A., Vanotti, M.B., Hunt, P.G.: Phosphorus recovery from pig manure solids prior to land application. J. Environ. Manag. 157, 1–7 (2015). https://doi.org/10.1016/j.jenvman.2015.04.010

    Article  Google Scholar 

  43. 43.

    VLAREMA - Besluit van de Vlaamse Regering tot vaststelling van het Vlaams reglement betreffende het duurzaam beheer van materiaalkringlopen en afvalstoffen. Retrieved from https://navigator.emis.vito.be/mijn-navigator?woId=43991 (2018)

  44. 44.

    Kabbe, C., Rinck-Pfieffer, S.: Global compendium on phosphorus recovery from sewage/sludge/ash. Global Water Research Coalition (2019)

  45. 45.

    European Sustainable Phosphorus Platform (ESPP), German Phosphorus Platform (DPP), & Netherlands Nutrient Platform (NNP). Phosphorus recovery technology catalogue. Retrieved from https://phosphorusplatform.eu/images/download/ESPP-NNP-DPP_P-recovery_tech_catalogue_v_25_2_2020.pdf (2020)

  46. 46.

    Lee, M., Kim, D.-J.: Identification of phosphorus forms in sewage sludge ash during acid pre-treatment for phosphorus recovery by chemical fractionation and spectroscopy. J. Ind. Eng. Chem. 51, 64–70 (2017). https://doi.org/10.1016/j.jiec.2017.02.013

    Article  Google Scholar 

  47. 47.

    Fang, L., Li, J., Donatello, S., Cheeseman, C.R., Wang, Q., Poon, C.S., Tsang, D.C.W.: Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chem. Eng. J. 348, 74–83 (2018). https://doi.org/10.1016/j.cej.2018.04.201

    Article  Google Scholar 

  48. 48.

    Li, J., Tsang, D.C.W., Wang, Q., Fang, L., Xue, Q., Poon, C.S.: Fate of metals before and after chemical extraction of incinerated sewage sludge ash. Chemosphere 186, 350–359 (2017). https://doi.org/10.1016/j.chemosphere.2017.08.012

    Article  Google Scholar 

  49. 49.

    Liu, J., Li, K., Wang, H., Zhu, M., Xu, H., Yan, H.: Self-assembly of hydroxyapatite nanostructures by microwave irradiation. Nanotechnology 16, 82–87 (2005). https://doi.org/10.1088/0957-4484/16/1/017

    Article  Google Scholar 

  50. 50.

    Peplinski, B., Adam, C., Michaelis, M., Kley, G., Emmerling, F., Simon, F.-G.: Reaction sequences in the thermochemical treatment of sewage sludge ashes revealed by X-ray powder diffraction—a contribution to the European project SUSAN. In: Zeitschrift für Kristallographie Supplemente, vol. 30, pp. 459–464. September 19–22. Warsaw, Poland (2009). https://doi.org/10.1524/zksu.2009.0068

  51. 51.

    Harvey, D.: Complexation titrations. Retrieved May 15, 2020, from https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Book%3A_Analytical_Chemistry_2.1_(Harvey)/09%3A_Titrimetric_Methods/9.03%3A_Complexation_Titrations (2020)

  52. 52.

    Deutsche Forschungsgemeinschaft (DFG): Nitrilotriacetic acid and its sodium salts. In: The MAK-Collection for Occupational Health and Safety. Wiley, Hoboken (2014). https://doi.org/10.1002/3527600418.mb13913vere4514

    Google Scholar 

  53. 53.

    Nowak, B., Aschenbrenner, P., Winter, F.: Heavy metal removal from sewage sludge ash and municipal solid waste fly ash—a comparison. Fuel Process. Technol. 105, 195–201 (2013). https://doi.org/10.1016/j.fuproc.2011.06.027

    Article  Google Scholar 

  54. 54.

    Liu, J., Fu, J., Ning, X., Sun, S., Wang, Y., Xie, W., et al.: An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration. J. Environ. Sci. 35, 43–54 (2015). https://doi.org/10.1016/j.jes.2015.01.027

    Article  Google Scholar 

  55. 55.

    Li, J., Xue, Q., Fang, L., Poon, C.S.: Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods. Waste Manag. 64, 161–170 (2017). https://doi.org/10.1016/j.wasman.2017.03.033

    Article  Google Scholar 

  56. 56.

    Zhang, Y., Cetin, B., Likos, W.J., Edil, T.B.: Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel 184, 815–825 (2016). https://doi.org/10.1016/j.fuel.2016.07.089

    Article  Google Scholar 

  57. 57.

    Yang, T., Rao, S., Zhang, D., Wen, J., Liu, W., Chen, L., Zhang, X.: Leaching of low grade zinc oxide ores in nitrilotriacetic acid solutions. Hydrometallurgy 161, 107–111 (2016). https://doi.org/10.1016/j.hydromet.2016.01.024

    Article  Google Scholar 

  58. 58.

    Chembid. (n.d.). Prices for chemicals from different suppliers. Retrieved May 4, 2020, from https://www.chembid.com

Download references

Acknowledgements

This study was financially supported by BMC Moerdijk BV (Industrial Park M349, Middenweg 36a, 4782 PM Moerdijk, The Netherlands) and Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO) (Lorien Luyckx is a SB PhD fellow at FWO, Project Number 1S08418N – 1S08420N). Furthermore, we want to thank BMC Moerdijk, Aquafin and Indaver for supplying the PMA, SSA and MBM samples. In addition, we want to thank Antoinette Deschuytere for carefully revising the manuscript.

Funding

This study was financially supported by BMC Moerdijk BV (Industrial Park M349, Middenweg 36a, 4782 PM Moerdijk, The Netherlands) and Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO) (Project Number 1S08418N – 1S08420N).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lorien Luyckx.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 111 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luyckx, L., Sousa Correia, D.S. & Van Caneghem, J. Linking Phosphorus Extraction from Different Types of Biomass Incineration Ash to Ash Mineralogy, Ash Composition and Chemical Characteristics of Various Types of Extraction Liquids. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-021-01368-3

Download citation

Keywords

  • Heavy metal extraction
  • Incineration ash
  • Meat and bone meal
  • Phosphorus extraction
  • Poultry manure
  • Sewage sludge