Monitoring of a III-Phase Olive Pomace Composting Process Using the CIELAB Colorimetric Method


An industrial scale of composting process using III-phase Olive Mill Wastes (OMW) was monitored using CIELAB color variables in order to correlate them with critical physicochemical compost variables. The compost variables that were measured during the composting process were the following: (1) Ash content (Ash, %), (2) pH, (3) Electrical Conductivity (EC, mS/cm), (4) Total Kjeldahl Nitrogen (TKN,%), (5) Fulvic and (6) Humic acids content (FA and HA, mg/g), (7) Carbon/ Nitrogen ratio, (8) Ammonia/Nitrates ratio, (9) Germination index (GI, %) and (10) Oxygen Uptake Rate (OUR, mg/g/day). Results showed strong correlations for almost all measured compost variables with several CIELAB color variables. Particularly, CIELAB variables a*, b*, C*, ΔE* show the strongest relationship, of all compost variables, with GI (R2 > 0.97) followed by N-NH4+/ N-NO3 (R2 > 0.93). OUR also shows strong relationships (R2 > 0.92) with CIELAB variables a*, b*, C* along with the strong relationships between color variables a*, ΔE* with FA (R2 > 0.91), pH (R2 > 0.91), TKN (R2 > 0.94) and color variable a* with C/N (R2 = 0.91). As a conclusion, CIELAB color methodology offers an easy, quick and low-cost method for monitoring and evaluating a composting process that utilizes OMW as substrate.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    International Olive Council: EU Olive Oil Figures. (2018). Accessed 12 June 2019

  2. 2.

    Michailides, M., Christou, G., Akratos, C.S., Tekerlekopoulou, A.G., Vayenas, D.V.: Composting of olive leaves and pomace from a three-phase olive mill plant. Int. Biodeterior. Biodegrad. 65(3), 560–564 (2011)

    Article  Google Scholar 

  3. 3.

    Vlyssides, A.G., Loizides, M.J., Karlis, P.K., Simonetis, S.I.: Olive stone oil production wastes and their characteristics. Fresenius Environ. Bull. 11(12b), 1114–1118 (2002)

    Google Scholar 

  4. 4.

    Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P.: Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem. 48(10), 1532–1552 (2013)

    Article  Google Scholar 

  5. 5.

    Vlyssides, A.G., Lamprou, G.K., Vlysidis, A.: Chap. 6—industrial case studies on the detoxificaton of OMWW using Fenton oxidation process followed by biological processes for energy and compost production. In: Galanakis, C.M. (ed.) Olive Mill Waste, pp. 119–138. Academic Press, Cambridge (2017)

    Google Scholar 

  6. 6.

    Bampalioutas, K., Vlysidis, A., Lyberatos, G., Vlyssides, A.: Detoxification and methane production kinetics from three-phase olive mill wastewater using Fenton’s reagent followed by anaerobic digestion. J. Chem. Technol. Biotechnol. 94(1), 265–275 (2019)

    Article  Google Scholar 

  7. 7.

    Vlyssides, A., Mai, S., Barampouti, E.M.: An integrated mathematical model for co-composting of agricultural solid wastes with industrial wastewater. Bioresour. Technol. 100(20), 4797–4806 (2009)

    Article  Google Scholar 

  8. 8.

    Epstein, E.: The Science of Composting. CRC Press, Boca Raton (1997)

    Google Scholar 

  9. 9.

    Rynk, R., van de Kamp, M., Wilson, G.B., Singley, M.E., Richard, T.L., Kolega, J.J., Gouin, F.R., Laliberty, L.J., Kay, D., Hoitink, W.M.D., Brinton, H.A.J.: On-Farm Composting Handbook. NRAES, New York (1992)

    Google Scholar 

  10. 10.

    Ait Baddi, G., Cegarra, J., Merlina, G., Revel, J.C., Hafidi, M.: Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste–wheat straw mixture. J. Hazard. Mater. 165(1), 1119–1123 (2009)

    Article  Google Scholar 

  11. 11.

    García-Gómez, A., Roig, A., Bernal, M.P.: Composting of the solid fraction of olive mill wastewater with olive leaves: organic matter degradation and biological activity. Bioresour. Technol. 86(1), 59–64 (2003)

    Article  Google Scholar 

  12. 12.

    Komilis, D.P., Tziouvaras, I.S.: A statistical analysis to assess the maturity and stability of six composts. Waste Manag. 29(5), 1504–1513 (2009)

    Article  Google Scholar 

  13. 13.

    Muktadirul, B., Chowdhury, A.K.M., Akratos, C.S., Vayenas, D.V., Pavlou, S.: Olive mill waste composting: a review. Int. Biodeterior. Biodegrad. 85, 108–119 (2013)

    Article  Google Scholar 

  14. 14.

    Sellami, F., Hachicha, S., Chtourou, M., Medhioub, K., Ammar, E.: Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresour. Technol. 99(15), 6900–6907 (2008)

    Article  Google Scholar 

  15. 15.

    Vlyssides, A.G., Bouranis, D.L., Loizidou, M., Karvouni, G.: Study of a demonstration plant for the co-composting of olive-oil-processing wastewater and solid residue. Bioresour. Technol. 56(2), 187–193 (1996)

    Article  Google Scholar 

  16. 16.

    Khan, M.A.I., Ueno, K., Horimoto, S., Komai, F., Someya, T., Inoue, K., Tanaka, K., Ono, Y.: CIELAB color variables as indicators of compost stability. Waste Manag. 29(12), 2969–2975 (2009)

    Article  Google Scholar 

  17. 17.

    Tomati, U., Madejon, E., Galli, E., Capitani, D., Segre, A.L.: Structural changes of humic acids during olive mill pomace composting. Compost. Sci. Util. 9(2), 134–142 (2001)

    Article  Google Scholar 

  18. 18.

    Diaz, L.F., Savage, G.M.: Chap. 4 Factors that affect the process. In: Diaz, L.F., de Bertoldi, M., Bidlingmaier, W., Stentiford, E. (eds.) Waste Management Series, pp. 49–65. Elsevier, Amsterdam (2007)

    Google Scholar 

  19. 19.

    Abbott, J.A.: Quality measurement of fruits and vegetables. Postharvest. Biol. Technol. 15(3), 207–225 (1999)

    Article  Google Scholar 

  20. 20.

    Sugahara, K., Harada, Y., Inoko, A.: Color change of city refuse during composting process. J. Plant. Nutr. Soil Sci. 25(2), 197–208 (1979)

    Article  Google Scholar 

  21. 21.

    Sugahara, K., Koga, S., Inoko, A.: Color change of straw during composting. J. Plant Nutr. Soil Sci. 30(2), 163–173 (1984)

    Article  Google Scholar 

  22. 22.

    García, C., Hernández, T., Costa, F.: Color changes of organic wastes during composting and maturation processes. J. Plant Nutr. Soil Sci. 36(2), 243–250 (1990)

    Article  Google Scholar 

  23. 23.

    Palechor-Tróchez, J.J., Ordóñez-Santos, L.E., Villada-Castillo, H.S.: Relationship between color CIEL∗a∗b∗ and total organic carbon in compost. Adv. Mater. Sci. Eng. 2018, 1–6 (2018)

    Article  Google Scholar 

  24. 24.

    Tsiodra, C., Lambrou, G., Seintis, G., Vlysiddes, A.G.: A novel respirometer for the determination of compost stability. In: 4th International Conference on Sustainable Waste Management. National Technical University of Athens Chemical Engineering Department, Limassol (2016)

    Google Scholar 

  25. 25.

    Thompson, W.H.: Test Methods for the Examination of Composting and Compost. The US Composting Composting Council Research and Education Foundation and the United States Department of Agriculture, Raleigh (2001)

    Google Scholar 

  26. 26.

    CIE: Industrial colour-difference evaluation, Technical report 116/1995. In: C.I.d.l.E.C. (ed.) Bureu. CIE, Vienna (1995)

    Google Scholar 

  27. 27.

    McGuire, R.G.: Reporting of objective color measurements. HortScience 27(12), 1254–1255 (1992)

    Article  Google Scholar 

  28. 28.

    HunterLab: The Basics of Color Perception and Measurement, HunterLab Presents, Version 1.4. (2001). Accessed 22 May 2018

  29. 29.

    Bremner, J.M., Mulvaney, C.S.: Nitrogen-total. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, pp. 595–624. American Society of Agronomy, Soil Science Society of America, Madison (1982)

    Google Scholar 

  30. 30.

    Büchi: Application Note No. 124/2013 Nitrogen Determination in Soil, pp. 1–7. Büchi, Flawil (2013)

    Google Scholar 

  31. 31.

    Wolfe, N.: Determination of manure electrical conductivity. In: Peters, J. (ed.) Recommended Methods of Manure Analysis, pp. 50–51. University of Wisconsin Extension, Madison (2003)

    Google Scholar 

  32. 32.

    Velasco, M.I., Campitelli, P., Ceppi, S.B., Havel, J.: Analysis of humic acid from compost of urban wastes and soil by fluorescence spectroscopy. Agriscientia 21, 31–38 (2004)

    Google Scholar 

  33. 33.

    Zucconi, F., Pera, A., Forte, M., de Bertoldi, M.: Evaluating toxicity of immature. Compost. BioCycle 22(2), 54–57 (1981)

    Google Scholar 

  34. 34.

    Cohen, L., Manion, L., Morrison, K.: Research Methods in Education, 6th edn. Routledge Farmer, London (2007)

    Google Scholar 

  35. 35.

    Paredes, C., Roig, A., Bernal, M., Sánchez-Monedero, M., Cegarra, J.: Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol. Fertil. Soils 32, 222–227 (2000)

    Article  Google Scholar 

  36. 36.

    Eurostat Statistics Explained: Wages and labour costs. (2019). Accessed 14 Nov 2020

  37. 37.

    Eurostat Statistics Explained: Electricity price statistics. (2020). Accessed 18 Nov 2020

Download references


This work was supported by the composting industry Organohumiki Thrakis IKE.

Author information



Corresponding author

Correspondence to Anestis Vlysidis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14.3 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsivas, D., Vlyssides, A. & Vlysidis, A. Monitoring of a III-Phase Olive Pomace Composting Process Using the CIELAB Colorimetric Method. Waste Biomass Valor (2021).

Download citation


  • Composting monitoring
  • CIE (L*, a*, b*) color scale
  • Olive mill wastes
  • Colorimetric variables
  • Physicochemical variables