Valorization of Lignocellulosic Wastes and Nutrient Recovery by Anoxygenic Photosynthetic Bacteria

Abstract

Lignocellulosic wastes are abundant and considered as the important feedstock. It is a value-added product by using microorganisms. Yet little is known regarding usage of lignocellulosic biomass by anoxygenic photosynthetic bacteria although they provide various applications and their biomass are rich in essential nutrients. This limits applications between lignocellulosic wastes and phototrophic bacteria. We examined growth and valuable products of photosynthetic bacterium Rhodopseudomonas faecalis PA2 cultivated in different lignocellulosic waste suspension under light condition. Suspension of rice straw, bagasse, coconut meal, soybean meal, corncob, fiber of palmyra palm peel, and spent coffee ground were prepared by filtration or boiling to be used as sole substrates without additional nutrients. Here we show that the selected strain could grow in the lignocellulosic waste suspension without heat pretreatment. Soybean meal showed the highest biomass, carbohydrate, lipid, carotenoid and bacteriochlorophyll productivities of 0.71 g/L/day, 350, 9.61, 33.11 and 212.54 mg/L/day, respectively, whereas coconut meal was the best substrate for protein productivity (138.61 mg/L/day). Rice straw and fiber of palmyra palm peel seem to be interesting and utilization of fiber of palmyra palm peel in microbial cultivation is reported for the first time. Our results demonstrate that lignocellulosic material suspension can be used as the promising substrates to produce valuable biomass from anoxygenic photosynthetic bacteria without pretreatment and secondary solid waste. We anticipate our investigation to be a starting point for further simultaneous value-added product production by anoxygenic photosynthetic bacteria as well as lignocellulosic waste utilization.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Lokhande, A., Ingale, S.L., Lee, S.H., Kim, J.S., Lohakare, J.D., Chae, B.J., Kwon, I.K.: The effects of Rhodobacter capsulatus KCTC-2583 on cholesterol metabolism, egg production and quality parameters during the late laying periods in hens. Asian-Australas J Anim Sci. 26, 831–837 (2013)

    Article  Google Scholar 

  2. 2.

    Liu, J., Xia, B., Du, X., Zeng, T., Liu, Y., Chen, L., Lu, L., Li, C.: Effects of water supplemented with Bacillus subtilis and photosynthetic bacteria on egg production, egg quality, serum immunoglobulins and digestive enzyme activity of ducks. J. Appl. Anim. Res. 46, 322–326 (2018)

    Article  Google Scholar 

  3. 3.

    Delamare-Deboutteville, J., Batstone, D.J., Kawasaki, M., Stegman, S., Salini, M., Tabrett, S., Smullen, R., Barnes, A.C., Hulsen, T.: Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water Res. X. 4, 100031 (2019)

    Article  Google Scholar 

  4. 4.

    Loo, P.L., Vikineswary, S., Chong, V.C.: Nutritional value and production of three species of purple non-sulfur bacteria grown in palm oil mill effluent and their application in rotifer culture. Aquac. Nutr. 19, 895–907 (2013)

    Article  Google Scholar 

  5. 5.

    Chiu, K., Liu, W.: Dietary administration of the extract of Rhodobacter sphaeroides WL-APD911 enhances the growth performance and innate immune responses of seawater red tilapia (Oreochromis mossambicus × Oreochromis niloticus). Aquaculture. 418–419, 32–38 (2014)

    Article  Google Scholar 

  6. 6.

    Saejung, C., Chaiyarat, A., Sa-noamuang, L.: Effects of algae, yeast and photosynthetic bacteria diets on survival and growth performance in the fairy shrimp, Streptocephalus sirindhornae (Branchiopoda, Anostraca). Crustaceana. 91, 1505–1522 (2018)

    Article  Google Scholar 

  7. 7.

    Nunkaew, T., Kantachote, D., Nitoda, T., Kanzaki, H.: The use of rice straw broth as an appropriate medium to isolate purple nonsulfur bacteria from paddy fields. Electron. J. Biotechnol. 15 (2012). https://doi.org/10.2225/vol15-issue6-fulltext-8

  8. 8.

    Patthawaro, S., Lomthaisong, K., Saejung, C.: Bioconversion of agro-industrial waste to value-added product lycopene by photosynthetic bacterium Rhodopseudomonas faecalis and its carotenoid composition. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-018-00571-z

  9. 9.

    Patthawaro, S., Saejung, C.: Production of single cell protein from manure as animal feed by using photosynthetic bacteria. Microbiol. Open. (2019). https://doi.org/10.1002/mbo3.913

  10. 10.

    Saejung, C., Ampornpat, W.: Production and nutritional performance of carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2 grown in domestic wastewater intended for animal feed production. Waste Biomass Valor. 10, 299–310 (2019)

    Article  Google Scholar 

  11. 11.

    Saejung, C., Puensungnern, L.: Evaluation of molasses-based medium as a low cost medium for carotenoids and fatty acid production by photosynthetic bacteria. Waste Biomass Valor. 11, 143–152 (2020)

    Article  Google Scholar 

  12. 12.

    Saejung, C., Salasook, P.: Recycling of sugar industry wastewater for single-cell protein production with supplemental carotenoids. Environ. Technol. 41, 59–70 (2020)

    Article  Google Scholar 

  13. 13.

    Saratale, G.D., Kshirsagar, S.D., Saratale, R.G., Govindwar, S.P., Oh, M.K.: Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. Biotechnol. Bioprocess Eng. 20, 733–743 (2015)

    Article  Google Scholar 

  14. 14.

    Ravindran, R., Jaiswal, A.K.: Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering (Basel). 3(30) (2016)

  15. 15.

    Alessi, A.M., Bird, S.M., Oates, N.C., Li, Y., Dowle, E.H., de Azevedo, E.R., Bennett, J.P., Polikarpov, I., Young, J.P.W., McQueen-Mason, S.J., Bruce, N.C.: Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnol. Biofuels. 11, 166 (2018)

    Article  Google Scholar 

  16. 16.

    Santek, M.I., Beluhan, S., Santek, B.: Production of microbial lipids from lignocellulosic biomass. In: Nageswara-Rao, M., Soneji, J.R. (eds.) Advances in Biofuels and Bioenergy. IntechOpen, London (2018). https://doi.org/10.5772/intechopen.74013

    Google Scholar 

  17. 17.

    Kanokkanjana, K., Garivait, V.: Alternative rice straw management practices to reduce field open burning in Thailand. Int. J. Environ. Sci. Dev. 4, 119–123 (2013)

    Article  Google Scholar 

  18. 18.

    Saejung, C., Apaiwong, P.: Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol. Bioprocess Eng. 20, 701–707 (2015)

    Article  Google Scholar 

  19. 19.

    Sheng, G.P., Yu, H.Q., Yu, Z.: Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl. Microbiol. Biotechnol. 67, 125–130 (2005)

    Article  Google Scholar 

  20. 20.

    DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  21. 21.

    Kwon, D.Y., Rhee, J.S.: A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. J. Am. Oil Chem. Soc. 63, 89–92 (1986)

    Article  Google Scholar 

  22. 22.

    Shen, D., Xiao, R., Gu, S., Zhang, H.: The overview of thermal decomposition of cellulose in lignocellulosic biomass, cellulose. In: van de Ven, T., Kadla, J. (eds.) Biomass Conversion. IntechOpen, London (2013). https://doi.org/10.5772/51883

    Google Scholar 

  23. 23.

    Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z., Zhang, Z.: Soybean curd residue: composition, utilization, and related limiting factors. ISRN Ind. Eng. (2013). https://doi.org/10.1155/2013/423590

  24. 24.

    Jia, X., Chen, M., Wan, J., Su, H., He, C.: Review on the extraction, characterization and application of soybean polysaccharide. RSC Adv. 5, 73525–73534 (2015)

    Article  Google Scholar 

  25. 25.

    Getha, K., Vikineswary, S., Chong, V.C.: Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater. World J. Microbiol. Biotechnol. 14, 505–511 (1998)

    Article  Google Scholar 

  26. 26.

    Ashokkumar, V., Salam, Z., Tiwari, O.N., Chinnasamy, S., Mohammed, S., Ani, F.N.: An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Convers. Manag. 101, 778–786 (2015)

    Article  Google Scholar 

  27. 27.

    Tourang, M., Baghdadi, M., Torang, A., Sarkhosh, S.: Optimization of carbohydrate productivity of Spirulina microalgae as a potential feedstock for bioethanol production. Int. J. Environ. Sci. Technol. 16, 1303–1318 (2019)

    Article  Google Scholar 

  28. 28.

    Rosa, G.M., Moraes, L., Souza, M.R.A.Z., Costa, J.A.V.: Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production. Bioresour. Technol. 200, 528–534 (2016)

    Article  Google Scholar 

  29. 29.

    Alhattab, M., Kermanshahi-Pour, A., Brooks, M.S.L.: Microalgae disruption techniques for product recovery: influence of cell wall composition. J. Appl. Phycol. 31, 61–88 (2019)

    Article  Google Scholar 

  30. 30.

    Silva, C.E.F., Sforza, E.: Carbohydrate productivity in continuous reactor under nitrogen limitation: effect of light and residence time on nutrient uptake in Chlorella vulgaris. Process Biochem. 51, 2112–2118 (2016)

    Article  Google Scholar 

  31. 31.

    Ho, S.H., Kondo, A., Hasunuma, T., Chang, J.S.: Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresour. Technol. 143, 163–171 (2013)

    Article  Google Scholar 

  32. 32.

    Cheng, D., Li, D., Yuan, Y., Zhou, L., Li, X., Wu, T., Wang, L., Zhao, Q., Wei, W., Sun, Y.: Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol. Biofuels. 10, 75 (2017)

    Article  Google Scholar 

  33. 33.

    Saejung, C., Thammaratana, T.: Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff. Environ. Technol. 37, 3055–3061 (2016)

    Article  Google Scholar 

  34. 34.

    Ng, S.P., Tan, C.P., Lai, O.M., Long, K., Mirhosseini, H.: Extraction and characterization of dietary fiber from coconut residue. J. Food Agric. Environ. 8, 172–177 (2010)

    Google Scholar 

  35. 35.

    Oladosu, Y., Rafii, M.Y., Abdullah, N., Magaji, U., Hussin, G., Ramli, A., Miah, G.: Fermentation quality and additives: a case of rice straw silage. Biomed. Res. Int. (2016). https://doi.org/10.1155/2016/7985167

  36. 36.

    Mukherjee, R., Chakraborty, R., Dutta, A.: Role of fermentation in improving nutritional quality of soybean meal—a review. Asian Australas. J. Anim. Sci. 29, 1523–1529 (2016)

    Article  Google Scholar 

  37. 37.

    Higuchi-Takeuchi, M., Morisaki, K., Toyooka, K., Numata, K.: Synthesis of high-molecular-weight polyhydroxyalkanoates by marine photosynthetic purple bacteria. PLoS One. (2016). https://doi.org/10.1371/journal.pone.0160981

  38. 38.

    Padovani, G., Carlozzia, P., Seggianib, M., Cinellib, P., Vitolob, S., Lazzeri, A.: PHB-rich biomass and bioH2 production by means of photosynthetic microorganisms. Chem. Eng. Trans. 49, 55–60 (2016)

    Google Scholar 

  39. 39.

    Pierce, E.C., LaFayette, P.R., Ortega, M.A., Joyce, B.L., Kopsell, D.A., Parrott, W.A.: Ketocarotenoid production in soybean seeds through metabolic engineering. PLoS One. 10, e0138196 (2015)

    Article  Google Scholar 

  40. 40.

    Vincent, U., Serano, F., Von Holst, C.: Development and validation of a multi-analyte method for the regulatory control of carotenoids used as feed additives in fish and poultry feed. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 34, 1285–1297 (2017)

    Article  Google Scholar 

  41. 41.

    Pasarin, D., Rovinaru, C.: Sources of carotenoids and their uses as animal feed additives-a review. Sci. Papers Ser. D, Anim. Sci. 61, 68–73 (2018)

    Google Scholar 

  42. 42.

    Lucas, A., Morales, J., Velando, A.: Differential effects of specific carotenoids on oxidative damage and immune response of gull chicks. J. Exp. Biol. 217, 1253–1262 (2014)

    Article  Google Scholar 

  43. 43.

    Zaheer, K.: Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CYTA-J. Food. 15, 474–487 (2017)

    Article  Google Scholar 

  44. 44.

    Swamy, B., Samia, M., Boncodin, R., Marundan, S., Rebong, D.B., Ordonio, R.L., Miranda, R.T., Rebong, A., Alibuyog, A.Y., Adeva, C.C., Reinke, R., MacKenzie, D.J.: Compositional analysis of genetically engineered GR2E “Golden Rice” in comparison to that of conventional rice. J. Agric. Food Chem. 67, 7986–7994 (2019)

    Article  Google Scholar 

  45. 45.

    Oren, A.: Characterization of pigments of prokaryotes and their use in taxonomy and classification. In: Rainey, F., Oren, A. (eds.) Methods in Microbiology, vol. 38, pp. 261–282. Elsevier, Amsterdam (2011)

    Google Scholar 

  46. 46.

    Paengkoum, P.: Utilization of concentrate supplements containing varying levels of coconut meal by Thai native Anglo-Nubian goats. Livestock Res. Rural Devel. 23, 1–7 (2011)

    Google Scholar 

  47. 47.

    Abeysekara, T.S., Atapattu, N.S.B.M.: Effects of dietary coconut oil meal with or without an enzyme mixture on laying performance and physical parameters of eggs of Japanese quail (Coturnix coturnix). Trop. Agric. Res. 7, 414–419 (2016)

    Article  Google Scholar 

  48. 48.

    Thiruchitrambalam, M., Logesh, M., Shanmugam, D., Muthukumar, S.: The physical, chemical properties of untreated and chemically treated Palmyra palm leaf fibres. Int. J. Eng. Technol. 7, 582–585 (2018)

    Article  Google Scholar 

  49. 49.

    Saha, B.C., Qureshi, N., Kennedy, G.J., Cotta, M.A.: Biological pretreatment of corn Stover with white-rot fungus for improved enzymatic hydrolysis. Int. Biodeterior. Biodegradation. 109, 29–35 (2016)

    Article  Google Scholar 

  50. 50.

    Kucharska, K., Rybarczyk, P., Holowacz, I., Lukajtis, R., Glinka, M., Kaminski, M.: Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules. 23, 2937 (2018)

    Article  Google Scholar 

  51. 51.

    Amin, F.R., Khalid, H., Zhang, H., Rahman, S., Zhang, R., Liu, G., Chen, C.: Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express. 7, 72 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Thailand Science Research and Innovation (TSRI) and Office of the Higher Education Commission (Grant No. MRG6280016) and Faculty of Science, Khon Kaen University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chewapat Saejung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saejung, C., Sanusan, W. Valorization of Lignocellulosic Wastes and Nutrient Recovery by Anoxygenic Photosynthetic Bacteria. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-021-01351-y

Download citation

Keywords

  • Value-added product
  • Biochemical composition
  • Soybean meal
  • Coconut meal
  • Fiber of palmyra palm peel