Bioconversion of Onion Waste to Valuable Biosugar as an Alternative Feed Source for Honey Bee

Abstract

White sugar is the main commodity used to feed honey bees during the off-season as a nectar substitute. However, the price of sugar is increasing every year, thereby making bee keeping an expensive enterprise. Hence, it is necessary to find an alternative bee feed that is cheaper than sugar. The study aims to determine the potential of an alternative bee feed from renewable resources using onion waste (OW), which has a similar sugar composition to that of honey. The OW produces biosugar from in-house produced enzymes at a 90% conversion rate. The efficiency of enzymatic hydrolysis increases by more than 2 times after popping pretreatment. Furthermore, a removal rate of 98.5% for sulfur compounds, which caused the distinctive smell of onion, is obtained using a continuous column process with an activated carbon-containing alginate bead (AC-AB) adsorbent. In addition, after popping pretreatment and continuous AC-AB adsorbent column treatment, the feed intake is increased and the mortality is decreased by 3.2 times compared to that of none-popping and desulfurization treatment. Moreover, the combination of alternative feed with pollen decreases the mortality rate to almost 5.4 times. The results clearly demonstrates that OW can be a possible alternative feed source for honey bees.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

OW:

Onion waste

AC-AB:

Activated carbon-containing alginate bead

POW:

Popping-pretreated onion waste

NOW:

Non-pretreated onion waste

HMF:

5-Hydroxymethylfurfural

OS-I:

Onion sugar I

OS-II:

Onion sugar II

AF-I:

Alternative feed I

AF-II:

Alternative feed II

References

  1. 1.

    Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L.: Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229), 1255957 (2015)

    Article  Google Scholar 

  2. 2.

    Switanek, M., Crailshein, K., Truhetz, H., Brodschneider, R.: Modeling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperature climate. Sci. Total Environ. 579, 1581–1587 (2017)

    Article  Google Scholar 

  3. 3.

    Neupane, N.R., Thapa, R.B.: Alternative to off-season sugar supplement feeding of honeybees. J. Inst. Agric. Anim. Sci. 26, 77–81 (2005)

    Article  Google Scholar 

  4. 4.

    Koo, W.W., Taylor, R.D.: Outlook of the U.S. and World Sugar Markets, 2013–2023. Center for Agricultural Policy and Trade Studies, North dakota state university (2014)

  5. 5.

    Bahran-Parvar, M., Lim, L.-T.: Fresh-Cut Onion: a review on processing, health benefits, and shelf-life. Compr. Rev. Food Sci. Food Saf. 17, 290–308 (2018)

    Article  Google Scholar 

  6. 6.

    Pereira, G.S., Cipriani, M., Wisbeck, E., Souza, O., Strapazzon, J.O., Gern, R.M.M.: Onion juice waste for production of Pleurotus sajor-caju and pectinases. Food Bioprod. Process. 106, 11–18 (2017)

    Article  Google Scholar 

  7. 7.

    Sharma, K., Mahato, N., Nile, S.H., Lee, E.T., Lee, Y.R.: Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food Funct. 7, 3354–3369 (2016)

    Article  Google Scholar 

  8. 8.

    FAOSTAT: http://www.fao.org/faostat/en/#data/QC (2016)

  9. 9.

    French, L., Hamman, L., Katz, S., Kozaki, Y., Frew, J.: Zero waste strategies for gills onions sustainable innovation and waste management. Donald Bren School of Environmental Science & Management, University of California, Santa Barbara (2010)

    Google Scholar 

  10. 10.

    Waldron, K.W.: Useful ingredients from onion waste. Food Sci. Technol. 15(2), 38–41 (2001)

    Google Scholar 

  11. 11.

    Asiah, N., Djaeni, M., Hii, C.L.: Moisture transport mechanism and drying kinetic of fresh harvested red onion bulbs under dehumidified air. Int. J. Food Eng. 13(9), 1–9 (2017)

    Article  Google Scholar 

  12. 12.

    Leqande, K.E.: Onion. In: Peter, K.V. (ed.) Handbook of Herbs and Spices, pp. 417–429. Woodhead Publishing, Cambridge (2012)

    Google Scholar 

  13. 13.

    Patil, V.S., Deshmukh, H.V.: Co-digestion of potato and onion market waste for biogas generation. J. Glob. Biosci. 4(6), 2532–2536 (2015)

    Google Scholar 

  14. 14.

    Benítez, V., Mollá, E., Martín-Cabrejas, M.A., Aguilera, Y., López-Andréu, F.J., Cools, K., Terry, L.A., Esteban, R.M.: Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum. Nutr. 66, 48–57 (2011)

    Article  Google Scholar 

  15. 15.

    Bello, M.O., Olabanji, I.O., Abdul-Hammed, M., Okunade, T.D.: Chracterization of domestic onion wastes and bulb (Allum cepa L.): fatty acids and metal contents. Int. Food Res. J. 20(5), 2153–2158 (2013)

    Google Scholar 

  16. 16.

    Sharma, K., Mahato, N., Lee, Y.R.: Systematic study on active compounds as antibacterial and antibiofilm agent in aging onions. J. Food Drug Anal. 26, 518–528 (2018)

    Article  Google Scholar 

  17. 17.

    Cebin, A.V., Šeremet, D., Mandura, A., Martinić, A., Komes, D.: Onion solid waste as apotential source of functional food ingredients. Eng. Power 15(3), 7–13 (2020)

    Google Scholar 

  18. 18.

    Santiago, B., Calvo, A.A., Gullón, B., Feijoo, G., Moreira, M.T., Gonzáles-García, S.: Production of flavonoid quercetin and fructooligosaccharides from onion (Allium cepa L.) waste: an environmental life cycle approach. Chem. Eng. J. 392(15), 123772 (2020)

    Article  Google Scholar 

  19. 19.

    Choi, I.S., Cho, E.J., Moon, J.H., Bae, H.-J.: Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chem. 188, 537–542 (2015)

    Article  Google Scholar 

  20. 20.

    Kim, H.M., Song, Y., Wi, S.G., Bae, H.-J.: Production of D-tagatose and bioethanol from onion waste by an intergrating bioprocess. J. Biotechnol. 260, 84–90 (2017)

    Article  Google Scholar 

  21. 21.

    Khiari, Z., Makris, D.P.: Stability and transformation of major flavonols in onion (Allium cepa) solid wastes. J. Food Sci. Technol. 49, 489–494 (2012)

    Article  Google Scholar 

  22. 22.

    Turner, C., Turner, P., Jacobson, G., Almgren, K., Waldebäck, M., Sjöberg, P., Karlsson, E.N., Markides, K.E.: Subcritical water extraction and ß-glucosidase-catalysed hydrolysis of quercetin glycosides in onion waste. Green Chem. 8, 949–959 (2006)

    Article  Google Scholar 

  23. 23.

    Kaack, K., Christensen, L.P., Hansen, S.L., Grevsen, K.: Non-structural carbohydrates in processed soft fried onion (Allium cepa L.). Eur. Food Res. Technol. 218, 372–379 (2004)

    Article  Google Scholar 

  24. 24.

    Hussain, S., Joudu, I., Bhat, R.: Dietary fiber from underutilized plant resources-S positive approach for valorization of fruit and vegetable wastes. Sustainability 12, 5401 (2020)

    Article  Google Scholar 

  25. 25.

    Benkeblia, N., Onodera, S., Yoshihira, T., Kosaka, S., Shiomi, N.: Effect of temperature on soluble invertase activity, and glucose, fructose and sucrose status of onion bulbs (Allium cepa) in store. Int. J. Food Sci. Nutr. 66, 48–57 (2011)

    Google Scholar 

  26. 26.

    Wheeler, M.M., Robinson, G.E.: Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup. Sci. Rep. 4, 5726–5730 (2014)

    Article  Google Scholar 

  27. 27.

    Abou-Shaara, H.F.: Effects of various sugar feeding choices in survival and tolerance of honey bee workers to low temperatures. J. Entomol. Acarol. Res. 49, 6200 (2017)

    Article  Google Scholar 

  28. 28.

    Song, Y., Nguyen, Q.A., Wi, S.G., Yang, J., Bae, H.-J.: Strategy for dual production of bioethanol and d-psicose as value-added products from cruciferous vegetable residue. Bioresour. Technol. 223, 34–39 (2017)

    Article  Google Scholar 

  29. 29.

    Davis, F., Terry, L.A., Chope, G.A., Faul, C.F.J.: Effect of extraction procedure on measured sugar concentrations in onion (Allium cepa L.) bulbs. J. Agric. Food Chem. 55, 4299–4306 (2007)

    Article  Google Scholar 

  30. 30.

    Hagler, J.R., Cohen, A.C., Loper, G.M.: Production and composition of onion nectar and honey bee (Hymenoptera: Apidae) foraging activity in Arizona. Environ. Entomol. 19, 327–331 (1990)

    Article  Google Scholar 

  31. 31.

    Rose, P., Whiteman, M., Moore, P.K., Zhu, Y.Z.: Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat. Prod. Rep. 22, 351–368 (2005)

    Article  Google Scholar 

  32. 32.

    Waller, G.D., Carpenter, E.W., Ziehl, O.A.: Potassium in onion nectar and its probable effect on attractiveness of onion flowers to honey bees. J. Am. Soc. Hortic. Sci. 97, 535–539 (1972)

    Google Scholar 

  33. 33.

    Cui, H., Turn, S.Q., Reese, M.A.: Removal of sulfur compounds from urility pipelined synthetic natural gas using modified activated carbons. Catal. Today 139, 274–279 (2009)

    Article  Google Scholar 

  34. 34.

    Park, J.J., Jung, S.Y., Ryu, C.Y., Park, C.G., Kim, J.N., Kim, J.C.: The removal of sulfur compounds using activated carbon-based sorbents impregnated with alkali or alkaline earth metal. J. Nanoelectron. Optoelectron. 5, 222–226 (2010)

    Article  Google Scholar 

  35. 35.

    Bagheri, S., Julkapli, N.M.: Effect of hybridization on the value-added activated carbon materials. Int. J. Ind. Chem. 7, 249–264 (2016)

    Article  Google Scholar 

  36. 36.

    Garcia-Galan, C., Berenguer-Murcia, Á, Fernandex-Lafuente, R., Rodrigues, R.C.: Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 353(16), 2885–2094 (2011)

    Article  Google Scholar 

  37. 37.

    Wahab, R.A., Elias, N., Abdullah, F., Ghoshal, S.K.: On the taught new tricks of enxymes immobilization: an all-inclusive overview. React. Funct. Polym. 152, 104613 (2020)

    Article  Google Scholar 

  38. 38.

    Labus, K., Wolanin, K., Radosiński, Ł: Comparative study on enzyme immobilization using natural hydrogel matrices-experimental studies supported by molecular models analysis. Catalysis 10, 489 (2020)

    Google Scholar 

  39. 39.

    Wi, S.G., Chung, B.Y., Lee, Y.G., Yang, D.J., Bae, H.-J.: Enhanced enzymatic hydrolysis of rapeseed straw by popping pretreatment for bioethanol production. Bioresour. Technol. 102, 5788–5793 (2011)

    Article  Google Scholar 

  40. 40.

    Choi, I.S., Kim, J.H., Wi, S.G., Kim, K.H., Bae, H.-J.: Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl. Energy 102, 204–210 (2013)

    Article  Google Scholar 

  41. 41.

    Giner Martínez-Sierra, J., San Blas, G., Marchante, O., Gayón, J.M., García Alonso, J.I.: Sulfur analysis by inductively coupled plasma-mass spectrometry: a review. Apectrochimica Acta Part B 10, 35–52 (2015)

    Article  Google Scholar 

  42. 42.

    Phisut, N., Jiraporn, B.: Characteristics and antioxidant activity of Maillard reaction products derived from chitosan-sugar solution. Int. Food Res. J. 20(3), 1077–1085 (2013)

    Google Scholar 

  43. 43.

    Wheeler, M.M., Robinson, G.E.: Diet-dependent gene expression in honey bees: honey vs. sucrose of high fructose corn syrup. Sci. Rep. 4, 5726 (2014)

    Article  Google Scholar 

  44. 44.

    Karimi, K., Taherzadeh, M.J.: A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour. Technol. 203, 348–356 (2016)

    Article  Google Scholar 

  45. 45.

    Nguyen, Q.A., Cho, E.J., Trinh, L.T.P., Jeong, J., Bae, H.-J.: Development of an integrated process to produce D-mannose and bioethanol from coffee residue waste. Bioresour. Technol. 244, 1039–1048 (2017)

    Article  Google Scholar 

  46. 46.

    Haque, M.A., Yang, X., Ong, K.L., Tang, W.-T., Kwan, T.H., Kulkarni, S., Lin, C.S.K.: Bioconversion of beverage waste to high fructose syrup as a value—added product. Food Bioprod. Process. 105, 179–187 (2017)

    Article  Google Scholar 

  47. 47.

    Rashid, M.H., Taj, E., Chowdhury, H.F., Bepay, N.I., Jung, N.C.: Supplement feeding to honeybee colony for field crop pollination; pumpkin and honey production in sandbar cropping system. J. Apicult. 33, 25–32 (2018)

    Article  Google Scholar 

  48. 48.

    Javaheri, S.D., Esmaili, M., Nkkhaohi, A., Mirhadi, S.A., Tahnasebi, H.: Honeybees with protein supplement and pollen substitute and its effects on development and resistance of honeybee’s colonies and honey production. In: 7th IBRA Conf./5th AAA Conf., Changmai, Thailand, p. 76 (2000)

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A2A2A05018238).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyeun-Jong Bae.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary information 1 (DOCX 2886 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, E.J., Choi, YS. & Bae, HJ. Bioconversion of Onion Waste to Valuable Biosugar as an Alternative Feed Source for Honey Bee. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-021-01344-x

Download citation

Keywords

  • Alternative feed
  • Bioconversion
  • Bio‐sugar
  • Enzymatic hydrolysis
  • Honey bee
  • Onion waste