Quality Evaluation of Produced Silage and Extracted Oil from Rainbow Trout (Oncorhynchus mykiss) Wastes Using Acidic and Fermentation Methods

Abstract

This study was conducted to compare the qualitative properties of silages prepared from rainbow trout viscera and extracted oils. Silages under acidic and fermentation processes were prepared and kept at room temperature (24 ± 2 °C) for 30 days. Experimental treatments include acid treatment with 3% (w/v) lactic acid added to raw wastes (AL), acid treatment with 3% (w/v) formic acid and propionic acid (1:1) added to raw wastes (AFP), fermentation treatments with 5% (w/v ) MRS broth culture medium containing 107 CFU/ml Lactobacillus plantarum bacteria and 15% (w/w) sugar beet molasses added to raw (FR) and cooked (FC) wastes, respectively. Qualitative evaluation of silages during storage was performed by chemical and microbial experiments. The qualitative evaluation of the oils extracted from the silages was performed on days 0, 7 and 30 using the peroxide value test. The changes in total volatile basic nitrogen (TVB-N) during storage had an increasing trend (P ˂ 0.05), and the highest rate on day 30 of storage (90.1 ± 22.82 mg N/100 g) was related to the prepared treatment by formic acid and propionic acid. The level of free fatty acids was increased (P ˂ 0.05) during storage and was higher in fermentation treatments than in acid treatments. In all treatments, the peroxide value reduced (P ˂ 0.05) at the end of the storage. Among measured volatile fatty acids, the highest level was related to acetic acid. The results of this study showed that the fermented silage could be better for using extracted oil and the acidic silage as a source of using protein in feed.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Arruda, L.F., Borghesi, R., Oetterer, M.: Use of fish waste as silage-a review. J. Braz. Arch Boil. Technol. 5, 79–86 (2007)

    Google Scholar 

  2. 2.

    Olsen, R.L., Toppe, J.: Fish silage hydrolysates: not only a feed nutrient, but also a useful feed additive. Trends Food Sci. Technol. 66, 93–97 (2017)

    Article  Google Scholar 

  3. 3.

    Benjakul, B., Morrissey, M.T.: Protein hydrolysates from Pacific whiting solid wastes. J. Agric. Food Chem. 45, 3423–3430 (1997)

    Article  Google Scholar 

  4. 4.

    Nikoo, M., Benjakul, S., Yasemi, M., Gavlighi, H.A., Xu, X.: Hydrolysates from rainbow trout (Oncorhynchus mykiss) processing by-product with different pretreatments: antioxidant activity and their effect on lipid and protein oxidation of raw fish emulsion. LWT Food Sci. Technol. 108, 120–128 (2019)

    Article  Google Scholar 

  5. 5.

    Marti-Quijal, F.J., Remize, F., Meca, G., Ferrer, E., Ruiz, M.J., Barba, F.J.: Fermentation in fish and by-products processing: an overview of current research and future prospects. Curr. Opin. Food Sci. 31, 9–16 (2020)

    Article  Google Scholar 

  6. 6.

    Van’t Land, M., Vanderperren, E., Raes, K.: The effect of raw material combination on the nutritional composition and stability of four types of autolyzed fish silage. Anim. Feed Sci. Technol. 234, 284–294 (2017)

    Article  Google Scholar 

  7. 7.

    Ologhobo, A.D., Balogun, A.M., Bolarinwa, B.B.: The replacement value of fish silage for fish meal in practical broiler rations. Biol Wastes. 25, 117–125 (1988)

    Article  Google Scholar 

  8. 8.

    Kotzamanis, Y.P., Alexis, M.N., Andriopoulou, A., Castritsi-Cathariou, I., Fotis, G.: Utilization of waste material resulting from trout processing in gilthead bream (Sparus aurata L.) diets. Aquacult. Res. 32, 288–295 (2001)

    Article  Google Scholar 

  9. 9.

    Vidoiti, R.M., Carneiro, D.J., Viegas, E.M.M.: Acid and fermented silage characterization and determination of apparent digestibility coefficient of crude protein for pacu Piaractus mesopotamicus. J. World Aquacult. Soc. 33, 57–62 (2002)

    Article  Google Scholar 

  10. 10.

    Goddard, J.S., Perret, J.S.M.: Co-drying fish silage for use in aquafeeds. Anim. Feed Sci. Technol. 118, 337–342 (2005)

    Article  Google Scholar 

  11. 11.

    Borghesi, R., Portz, L., Oetterer, M., Cyrino, J.E.P.: Apparent digestibility coefficient of protein and amino acids of acid, biological and enzymatic silage for Nile tilapia (Oreochromis niloticus). J. Aquacult. Nutr. 14, 242–248 (2008)

    Article  Google Scholar 

  12. 12.

    Nørgaard, J.V., Blaabjerg, K., Poulsen, H.D.: Salmon protein hydrolysate as a protein source in feed for young pigs. Anim. Feed Sci. Technol. 177, 124–129 (2012)

    Article  Google Scholar 

  13. 13.

    Al-Abri, A.S., Mahgoub, O., Kadim, I.T., Al-Marzooqi, W., Goddard, S.J., Al-Farsi, M.: Processing and evaluation of nutritive value of fish silage for feeding Omani sheep. J. Appl. Anim Res. 42, 406–413 (2014)

    Article  Google Scholar 

  14. 14.

    Goddard, J.S., AL-Yahyaio, D.S.S. : Chemical and Nutitional Characteristics of Dried Sardine Silage. J. Aquat. Food Prod. Technon. 10, 39–50 (2001)

    Article  Google Scholar 

  15. 15.

    FAO.: Animal feed resources information system. http://www.fao.org. (2003). Accessed 23 Jan 2003

  16. 16.

    Gildberg, A., Almas, K.A.: Utilization of fish viscera in food engineering and process application. Elsevier Appl. Sci. Lond. 2, 383–393 (1986)

    Google Scholar 

  17. 17.

    Zahar, M., Benkerroum, N., Guerouali, A., Laraki, Y., Yakoubi, K.E.L.: Effect of temperature, anaerobiosis, stirring and salt addition on natural fermentation silage of sardine and sardine wastes in sugarcane molasses. J. Bioresour Technol. 82, 171–176 (2002)

    Article  Google Scholar 

  18. 18.

    Güllü, K., Acar, Ü., Tezel, R., Yozukmaz, A.: Replacement of fish meal with fish processing by-product silage in diets for the rainbow trout, Oncorhynchus mykiss. Pak. J. Zool. 46, 1697–1703 (2014)

    Google Scholar 

  19. 19.

    Nørgaard, J.V., Petersen, J.K., Tørring, D.B., Jørgensen, H., Lærke, H.N.: Chemical composition and standardized ileal digestibility of protein and amino acids from blue mussel, starfish, and fish silage in pigs. Anim. Feed Sci. Technol. 205, 90–97 (2015)

    Article  Google Scholar 

  20. 20.

    Sajib, M., Albers, E., Langeland, M., Undeland, I.: Understanding the effect of temperature and time on protein degree of hydrolysis and lipid oxidation during ensilaging of herring (Clupea harengus) filleting co-products. Sci. Rep. 10, 1–13 (2020)

    Article  Google Scholar 

  21. 21.

    Goosen, N.J., de Wet, L.F., Görgens, J.F., Jacobs, K., de Bruyn, A.: Fish silage oil from rainbow trout processing waste as alternative to conventional fish oil in formulated diets for Mozambique tilapia Oreochromis mossambicus. Anim. Feed Sci. Technol. 188, 74–84 (2014)

    Article  Google Scholar 

  22. 22.

    Fiori, L., Solana, M., Tosi, P., Manfrini, M., Strim, C., Guella, G.: Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: trout by-products as a possible source of omega-3 lipids? Food Chem. 134, 1088–1095 (2012)

    Article  Google Scholar 

  23. 23.

    Adeli, A., Baghaei, F.: Production and supply of rainbow trout in Iran and the world. World. J. Fish. Mar. Sci. 5, 335–341 (2013)

    Google Scholar 

  24. 24.

    Fagbenro, O., Jauncey, K.: Chemical and nutritional quality of raw, cooked and salted fish silages. Food Chem. 48, 331–335 (1993)

    Article  Google Scholar 

  25. 25.

    Dos, S.C.E., Da Silva, J., Zinani, F., Wander, P., Gomes, L.P.: Oil from the acid silage of Nile tilapia waste: physicochemical characteristics for its application as biofuel. J. Renew Energy. 80, 331–337 (2015)

    Article  Google Scholar 

  26. 26.

    Fagbenro, O.A., Jauncery, K.: Physical and nutritional properties of moist fermented fish silage pellets as a protein supplement for tilapia (Oreochromis niloticus). Anim. Feed. Sci. Technol. 71, 11–18 (1998)

    Article  Google Scholar 

  27. 27.

    Van Wyk, H.J., Heydenrych, C.M.: The production of naturally fermented fish silage using various lactobacilli and different carbohydrate sources. J. Sci. Food Agric. 36, 1093–1103 (1985)

    Article  Google Scholar 

  28. 28.

    Ashayerizadeh, O., Dastar, B., Samadi, F., Khomeiri, M., Yamchi, A., Zerehdaran, S.: Study on the chemical and microbial composition and probiotic characteristics of dominant lactic acid bacteria in fermented poultry slaughterhouse. Waste Manage. 65, 178–185 (2017)

    Article  Google Scholar 

  29. 29.

    AOAC.: Official methods of analysis (14th ed). Assoc. Off. Anal. Chem., Wash (1990)

  30. 30.

    Khalafalla, F.A., Ali, F.H., Hassan, A.R.: Quality improvement and shelf-life extension of refrigerated Nile tilapia (Oreochromis niloticus) fillets using natural herbs. J. Basic Appl. Sci. 4, 33–40 (2015)

    Google Scholar 

  31. 31.

    Visessanguan, W., Benjakul, S., Riebroy, S., Thepkasikul, P.: Changes in composition and functional properties of proteins and their contributions to Nham characteristics. J. Meat Sci. 66, 579–588 (2004)

    Article  Google Scholar 

  32. 32.

    Woyewoda, A.D., Shaw, S.J., Ke, P.J., Burns, B.G.: Recommended Laboratory Methods for Assessment of Fish Quality. Nova Scotia, Canada (1986)

    Google Scholar 

  33. 33.

    Hosseini, Z.: Common methods in food analysis, sixth ed. Shiraz Univ, Iran (2007)

  34. 34.

    Mirzaei-Alamouti, H., Moradi, S., Shahalizadeh, Z., Razavian, M., Amanlou, H., Harkinezhad, T., Aschenbach, J.R.: Both monensin and plant extract alter ruminal fermentation in sheep but only monensin affects the expression of genes involved in acid-base transport of the ruminal epithelium. Anim. Feed Sci. Technol. 219, 132–143 (2016)

    Article  Google Scholar 

  35. 35.

    Sallam, I.K.: Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 18, 566–575 (2007)

    Article  Google Scholar 

  36. 36.

    Fagbenro, O.A.: Preparation, properties and preservation of lactic acid fermented shrimp heads. Food Res. Int. 29, 595–599 (1996)

    Article  Google Scholar 

  37. 37.

    Hossain, U., Alam, A.K.M.N.: Production of powder fish silage from fish market wastes. SAARC J. Agric. 13, 13–25 (2015)

    Article  Google Scholar 

  38. 38.

    Espe, M., Raa, J., Njaa, L.R.: Nutritional value of stored fish silage as a protein source for young rats. J. Sci. Food Agric. 49, 259–270 (1989)

    Article  Google Scholar 

  39. 39.

    Haaland, H., Njaa, L.R.: Total volatile nitrogen-A quality criterion for fish silage? Acuacult. 79, 311–316 (1989)

    Article  Google Scholar 

  40. 40.

    Vidotti, R.M., Viegas, E.M.M., Carneiro, D.J.: Amino acid composition of processed fish silage using different raw materials. Anim. Feed Sci. Technol. 105, 199–204 (2003)

    Article  Google Scholar 

  41. 41.

    Geron, L.J.V., Zeoula, L.M., Vidotti, R.M., Matsushita, M., Kazama, R., Neto, S.F.C., Fereli, F.: Chemical characterization, dry matter and crude protein ruminal degradability and in vitro intestinal digestion of acid and fermented silage from tilapia filleting residue. Anim. Feed Sci. Technol. 136, 226–239 (2007)

    Article  Google Scholar 

  42. 42.

    Russell, S.M., Fletcher, D.L., Pancorbo, O.C., Merka, W.C.: Effect of lactic acid fermentation on bacterial pathogens and indicator organisms in broiler processing waste. Poultr. Sci. 72, 1573–1576 (1993)

    Article  Google Scholar 

  43. 43.

    Sasaki, K., Mitsumoto, M., Kawabata, K.: Relationship between lipid peroxidation and fat content in Japanese Black beef Longissimus muscle during storage. Meat Sci. 59, 407–410 (2001)

    Article  Google Scholar 

  44. 44.

    Gandotra, R., Sharma, S., Koul, M., Gupta, S.: Effect of chilling and freezing on fish muscle. J. Pharm Biol. Sci. 2, 05–09 (2012)

    Google Scholar 

  45. 45.

    Lindgren, S., Pleje, M.: Silage fermentation of fish or fish waste products with lactic acid bacteria. J. Sci. Food Agric. 34, 1057–1067 (1983)

    Article  Google Scholar 

  46. 46.

    Backhoff, H.P.: Some chemical changes in fish silage. Int. J. Food Sci. Technol. 11, 353–363 (1976)

    Article  Google Scholar 

  47. 47.

    Bernárdez, M., Pastoriza, L., Sampedro, G., Herrera, J.J., Cabo, M.L.: Modified method for the analysis of free fatty acids in fish. J. Agric. Food Chem. 53, 1903–1906 (2005)

    Article  Google Scholar 

  48. 48.

    Tatterson, I.N., Windsor, M.L.: Fish silage. J. Sci. Food Agric. 25, 369–379 (1974)

    Article  Google Scholar 

  49. 49.

    Dellali, A., Karam, H.Z., Karam, N.E.: Lipase and esterase activities of lactic acid bacteria isolated from different biotopes. Afr. J. Biotechnol. 19, 156–164 (2020)

    Article  Google Scholar 

  50. 50.

    Adams, A., Bouckaert, C., Van Lancker, F., De Meulenaer, B., De Kimpe, N.: Amino acid catalysis of 2-alkylfuran formation from lipid oxidation-derived α, β-unsaturated aldehydes. J. Agric. Food. Chem. 59, 11058–11062 (2011)

    Article  Google Scholar 

  51. 51.

    Sajib, M., Undeland, I.: Towards valorization of herring filleting by-products to silage 2.0: effect of temperature and time on lipid oxidation and non-enzymatic browning reactions. LWT Food Sci. Technol. 109441 (2020)

  52. 52.

    Heras, H., McLeod, C.A., Ackman, R.G.: Atlantic dogfish silage vs herring silage in diets for Atlantic salmon (Salmo salar): growth and sensory evaluation of fillets. Aquacult. 125, 93–106 (1994)

    Article  Google Scholar 

  53. 53.

    Gallardo, P., Gaxiola, G., Soberano, S., Taboada, J.G., Pérez, M., Rosas, C., Sotelo, A.: Nutritive value of diets containing fish silage for juvenile Litopenaeus vannamei (Bonne, 1931). J. Sci. Food Agric. 92, 2320–2325 (2012)

    Article  Google Scholar 

  54. 54.

    Wood, J.F., Capper, B.S., Nicolaides, L.: Preparation and evaluation of diets containing fish silage, cooked fish preserved with formic acid and low-temperature-dried fish meal as protein sources for mirror carp (Cyprinus carpio). Aquacult. 44(1), 27–40 (1985)

    Article  Google Scholar 

  55. 55.

    Strasdine, G.A., Jones, Y.M., Beames, R., Fisher, L.: An assessment of ensiling the processing wastes from dogfish to produce a protein feed for monogastric animals. Can. J. Anim. Sci. 68, 873–880 (1988)

    Article  Google Scholar 

  56. 56.

    Özyurt, G., Özkütük, A.S., Boğa, M., Durmuş, M., Boğa, E.K.: Biotransformation of seafood processing wastes fermented with natural lactic acid bacteria; the quality of fermented products and their use in animal feeding. Turk. J. Fish. Aquat Sci. 17, 543–555 (2017)

    Google Scholar 

  57. 57.

    Lessard, J.R., Briggs, R.A., Scaletti, J.V.: The organic acids in silage as determined by gas chromatography. Can. J. Plant Sci. 41, 507–516 (1961)

    Article  Google Scholar 

  58. 58.

    Solli, L., Bergersen, O., Sørheim, R., Briseid, T.: Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production. Waste Manage. 34, 1553–1559 (2014)

    Article  Google Scholar 

  59. 59.

    Mahendrakar, N.S., Khadade, V.S., Yashoda, K.P., Dani, N.P.: Chemical and microbiological changes during autolysis of fish and poultry viscera. Trop Sci. 31, 45–54 (1991)

    Google Scholar 

  60. 60.

    Tanuja, S., Mohanty, P.K., Kumar, A., Moharana, A., Nayak, S.K.: Shelf life study of acid added silage produced from fresh water fish dressing waste with and without the addition of antioxidants. Int. J. Agric. Food Sci. Technol. 5, 91–98 (2014)

    Google Scholar 

  61. 61.

    Bhaskar, N., Mahendrakar, N.S.: Chemical and microbiological changes in acid ensiled visceral waste of Indian major carp Catla catla (Hamilton) with emphasis on proteases. Indian J. Fish. 54, 217–225 (2007)

    Google Scholar 

  62. 62.

    Ramasubburayan, R., Iyapparaj, P., Subhashini, K.J., Chandran, M.N., Palavesam, A., Immanuel, G.: Characterization and nutritional quality of formic acid silage developed from marine fishery waste and their potential utilization as feed stuff for common carp Cyprinus carpio fingerlings. Turk. J. Fish. Aquat Sci. 13, 281–289 (2013)

    Article  Google Scholar 

  63. 63.

    Santana-Delgado, H., Avila, E., Sotelo, A.: Preparation of silage from Spanish mackerel (Scomberomorus maculatus) and its evaluation in broiler diets. Anim. Feed Sci. Technol. 141, 129–140 (2008)

    Article  Google Scholar 

  64. 64.

    Bello, R., Cardillo, E., Martínez, R.: Microbial silage production from eviscerated fish. Lat Am. Arch Nut. 43, 221–227 (1993)

    Google Scholar 

Download references

Funding

Funding was supported by Gorgan University of Agricultural Sciences and Natural Resources (Grant No. 9521043104).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bahareh Shabanpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raeesi, R., Shabanpour, B. & Pourashouri, P. Quality Evaluation of Produced Silage and Extracted Oil from Rainbow Trout (Oncorhynchus mykiss) Wastes Using Acidic and Fermentation Methods. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-020-01331-8

Download citation

Keywords

  • Oncorhynchus mykiss
  • Acidic silage
  • Fermentation
  • Fish waste
  • Oil