Influence of Almond Shell Content and Particle Size on Mechanical Properties of Starch-Based Biocomposites

Abstract

This work reports on the effect of the particle size of almond shell powder (ASP) filler on starch-based biodegradable polymer. Different size ranges of particles were studied: < 0.05 mm, 0.05–0.08 mm, 0.08–0.125 mm and 0.125–0.250 mm in biocomposites with 30 wt% ASP. Additionally, biocomposites with 5 wt%, 10 wt% and 20 wt% of filler were prepared with ASP of 0.08–0.125 mm particle size. Biocomposites were manufactured by extrusion-compounding, and test samples were produced by injection moulding with the aim to study mechanical and thermal properties. The possibility of implementing the developed biocomposites in traditional industries, such as toys or packaging was evaluated, as biodegradable materials have gained great industrial interest in recent years owing to the coming legislative requirements and/or due to customer demands. The addition of the ASP on the polymeric matrix increases the stiffness of the polymer and reduces the deformation at break, the impact strength and the thermal stability. On the other hand, the final natural aesthetics provided by the filler is highly appreciated by the manufacturers and consumers (Blasco in Consumer attitudes and toy trends for eco-babies and bio-parenting, Nuremberg, 2020; Baeza in Childcare trends 43–45, 2020). The results of the study showed that, the filler content had a more significant effect than the particle size on the mechanical properties of the biocomposites.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Blasco, C.: Consumer attitudes and toy trends for eco-babies and bio-parenting. Presentation done at Toy Business Forum in Spielwarenmesse; January 29, 2020; Nuremberg. https://youtu.be/VlcH5sccwNs (2020)

  2. 2.

    Baeza, J.P., Costa, M., Busó, P., Blasco, C., Morante, M., Blanco, P.: Childcare Trends 2019–2020. Asociación de Empresas Innovadoras de la Infancia; (2019)

  3. 3.

    Blasco, C.: Las familias millenials quieren juguetes sostenibles para sus hijos. Juguetes B2B. 13–45. https://www.juguetesb2b.com/digitales/jb2b236/ (2020).

  4. 4.

    Fu, S.Y., Feng, X.Q., Lauke, B., Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B 39(6), 933–961 (2008). https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  Google Scholar 

  5. 5.

    Pickering, K.L., Efendy, M.G.A., Le, T.M.: A review of recent developments in natural fibre composites and their mechanical performance . Compos. Part A 83, 98–112 (2016). https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  Google Scholar 

  6. 6.

    Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M.: Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37(11), 1552–1596 (2012). https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  7. 7.

    Gurunathan, T., Mohanty, S., Nayak, S.K.: A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A. 77, 1–25 (2015). https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  Google Scholar 

  8. 8.

    European Bioplastics e.V Global production capacities of bioplastics 2018 (by Material Type). Bioplastic market data. European Bioplastics. https://www.european-bioplastics.org/market/ (2019). Accessed 15 June 2020

  9. 9.

    Lopez, J.P., Vilaseca, F., Barberà, L., Bayer, R.J., Pèlach, M.A., Mutjé, P.: Processing and properties of biodegradable composites based on mater-Bi ® and hemp core fibres. Resour. Conserv. Recycl. 59, 38–42 (2012). https://doi.org/10.1016/j.resconrec.2011.06.006

    Article  Google Scholar 

  10. 10.

    Satyanarayana, K.G., Arizaga, G.G.C., Wypych, F.: Biodegradable composites based on lignocellulosic fibers-an overview. Prog. Polym. Sci. 34(9), 982–1021 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  Google Scholar 

  11. 11.

    Haque, M., Alvarez, V., Paci, M., Pracella, M.: Processing, compatibilization and properties of ternary composites of mater-Bi with polyolefins and hemp fibres. Compos. Part A 42(12), 2060–2069 (2011). https://doi.org/10.1016/j.compositesa.2011.09.015

    Article  Google Scholar 

  12. 12.

    Vallejos, M.E., Curvelo, A.A.S., Teixeira, E.M., Mendes, F.M., Carvalho, A.J.F., Felissia, F.E., Area, M.C.: Composite materials of thermoplastic starch and fibers from the ethanol-water fractionation of bagasse. Ind. Crops Prod. 33(3), 739–746 (2011). https://doi.org/10.1016/j.indcrop.2011.01.014

    Article  Google Scholar 

  13. 13.

    Rosa, M.F., Chiou, B., Medeiros, E.S., Wood, D.F., Williams, T.G., Mattoso, L.H.C., Orts, W.J., Imam, S.H.: Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour. Technol. 100(21), 5196–5202 (2009). https://doi.org/10.1016/j.biortech.2009.03.085

    Article  Google Scholar 

  14. 14.

    Liu, D., Zhong, T., Chang, P.R., Li, K., Wu, Q.: Starch composites reinforced by bamboo cellulosic crystals. Bioresour. Technol. 101(7), 2529–2536 (2010). https://doi.org/10.1016/j.biortech.2009.11.058

    Article  Google Scholar 

  15. 15.

    Di Franco, C.R., Cyras, V.P., Busalmen, J.P., Ruseckaite, R.A., Vázquez, A.: Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym. Degrad. Stab. 86(1), 95–103 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.02.009

    Article  Google Scholar 

  16. 16.

    Campos, A., Marconcini, J.M., Martins-Franchetti, S.M., Mattoso, L.H.C.: The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polym. Degrad. Stab. 97(10), 1948–1955 (2012). https://doi.org/10.1016/j.polymdegradstab.2011.11.010

    Article  Google Scholar 

  17. 17.

    Alemdar, A., Sain, M.: Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos. Sci. Technol. 68(2), 557–565 (2008). https://doi.org/10.1016/j.compscitech.2007.05.044

    Article  Google Scholar 

  18. 18.

    Grylewicz, A., Spychaj, T., Zdanowicz, M.: Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Compos. Part A 121(March), 517–524 (2019). https://doi.org/10.1016/j.compositesa.2019.04.001

    Article  Google Scholar 

  19. 19.

    El-Shekeil, Y.A., Sapuan, S.M., Algrafi, M.W.: Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites. Mater. Des. 64, 330–333 (2014). https://doi.org/10.1016/j.matdes.2014.07.034

    Article  Google Scholar 

  20. 20.

    Farhan Zafar, M., Siddiqui, M.A.: Raw natural fiber reinforced polystyrene composites: effect of fiber size and loading. Mater. Today Proc. 5(2), 5908–5917 (2018). https://doi.org/10.1016/j.matpr.2017.12.190

    Article  Google Scholar 

  21. 21.

    Tawakkal, I.S.M.A., Cran, M.J., Bigger, S.W.: Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/Kenaf/Thymol composites. Ind. Crops Prod. 61, 74–83 (2014). https://doi.org/10.1016/j.indcrop.2014.06.032

    Article  Google Scholar 

  22. 22.

    Mohamed, W.Z.W., Baharum, A., Ahmad, I., Abdullah, I., Zakaria, N.E.: Effects of fiber size and fiber content on mechanical and physical properties of mengkuang reinforced thermoplastic natural rubber composites. BioResources 13(2), 2945–2959 (2018). https://doi.org/10.15376/biores.13.2.2945-2959

    Article  Google Scholar 

  23. 23.

    Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., Torres-Giner, S.: Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Ind. Crops Prod. 2018(111), 878–888. https://doi.org/10.1016/j.indcrop.2017.10.062

    Article  Google Scholar 

  24. 24.

    Carbonell-Verdu, A., Quiles-Carrillo, L., Montanes, N., Balart, R., Torres-Giner, S., Garcia-Garcia, D.: Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Compos. B (2018). https://doi.org/10.1016/j.compositesb.2018.04.017

    Article  Google Scholar 

  25. 25.

    García, A.M., García, A.I., Cabezas, M.Á.L., Reche, A.S.: Study of the influence of the almond variety in the properties of injected parts with biodegradable almond shell based masterbatches. Waste Biomass Valoriz. 6(3), 363–370 (2015). https://doi.org/10.1007/s12649-015-9351-x

    Article  Google Scholar 

  26. 26.

    Matrix, P.B.S., Liminana, P., Quiles-carrillo, L., Boronat, T., Balart, R.: The effect of varying almond shell flour (ASF) loading in composites with poly (butylene succinate linseed oil (MLO). Materials (2018). https://doi.org/10.3390/ma11112179

    Article  Google Scholar 

  27. 27.

    Liminana, P., Balart, R., Montanes, N.: Development and characterization of environmentally friendly composites from poly (butylene succinate) (PBS) and almond shell flour with different compatibilizers. Compos. Part B 144(January), 153–162 (2018). https://doi.org/10.1016/j.compositesb.2018.02.031

    Article  Google Scholar 

  28. 28.

    García, A.I., García, A.M., Bou, S.F.: Study of the influence of the almond shell variety onthe mechanical properties of starch-basedpolymer biocomposites. Polymers (Basel). 12(9), 1–20 (2020). https://doi.org/10.3390/POLYM12092049

    Article  Google Scholar 

  29. 29.

    Bledzki, A.K., Letman-Sakiewicz, M., Murr, M.: Influence of static and cyclic climate condition on bending properties of wood plastic composites (WPC). Express Polym. Lett. 4(6), 364–372 (2010). https://doi.org/10.3144/expresspolymlett.2010.46

    Article  Google Scholar 

  30. 30.

    Marcovich, N.E., Reboredo, M.M., Aranguren, M.I.: Dependence of the mechanical properties of woodflour-polymer composites on the moisture content. J. Appl. Polym. Sci. 68(13), 2069–2076 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980627)68:13%3c2069::AID-APP2%3e3.0.CO;2-A

    Article  Google Scholar 

  31. 31.

    Dhakal, H.N., Zhang, Z.Y., Richardson, M.O.W.: Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 67(7–8), 1674–1683 (2007). https://doi.org/10.1016/j.compscitech.2006.06.019

    Article  Google Scholar 

  32. 32.

    Elfehri Borchani, K., Carrot, C., Jaziri, M.: Biocomposites of alfa fibers dispersed in the mater-Bi® type bioplastic: morphology, mechanical and thermal properties. Compos. Part A 78, 371–379 (2015). https://doi.org/10.1016/j.compositesa.2015.08.023

    Article  Google Scholar 

  33. 33.

    Torró, R. M.; Greus, A. R.; Desarrollo Y.: Caracterización De Biocomposites Enfibrados Procedentes de Recursos Renovables. Estudio De Su Degradación en Tierra. Universitat Politècnica de València (España). (2010)

  34. 34.

    De Morais Teixeira, E., Da Róz, A.L., De Carvalho, A.J.F., Da Silva Curvelo, A.A.: Preparation and characterisation of thermoplastic starches from cassava starch, cassava root and cassava bagasse. Macromol. Symp. 229, 266–275 (2005). https://doi.org/10.1002/masy.200551133

    Article  Google Scholar 

  35. 35.

    Hamza, S., Saad, H., Charrier, B., Ayed, N., Charrier-El Bouhtoury, F.: Physico-chemical characterization of tunisian plant fibers and its utilization as reinforcement for plaster based composites. Ind. Crops Prod. 49, 357–365 (2013). https://doi.org/10.1016/j.indcrop.2013.04.052

    Article  Google Scholar 

  36. 36.

    Moriana, R., Vilaplana, F., Karlsson, S., Ribes, A.: Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbohydr. Polym. 112, 422–431 (2014). https://doi.org/10.1016/j.carbpol.2014.06.009

    Article  Google Scholar 

  37. 37.

    Fan, M., Naughton, A.: Mechanisms of thermal decomposition of natural fibre composites. Compos. Part B 88, 1–10 (2016). https://doi.org/10.1016/j.compositesb.2015.10.038

    Article  Google Scholar 

  38. 38.

    Ratanawilai, T., Nakawirot, K., Deachsrijan, A., Homkhiew, C.: Influence of wood species and particle size on mechanical and thermal properties of wood polypropylene composites. Fibers Polym. 15(10), 2160–2168 (2014). https://doi.org/10.1007/s12221-014-2160-1

    Article  Google Scholar 

  39. 39.

    Essabir, H., Bensalah, M.O., Rodrigue, D., Bouhfid, R., Qaiss, A.E.K.: Biocomposites based on argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohydr. Polym. 143, 70–83 (2016). https://doi.org/10.1016/j.carbpol.2016.02.002

    Article  Google Scholar 

  40. 40.

    Fazeli, M., Keley, M., Biazar, E.: Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int. J. Biol. Macromol. 116, 272–280 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.186

    Article  Google Scholar 

  41. 41.

    Scaffaro, R., Maio, A., Lopresti, F.: Physical properties of green composites based on poly-lactic acid or mater-Bi® filled with posidonia oceanica leaves. Compos. Part A 112(June), 315–327 (2018). https://doi.org/10.1016/j.compositesa.2018.06.024

    Article  Google Scholar 

  42. 42.

    Kaewtatip, K., Thongmee, J.: Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Mater. Des. 40, 314–318 (2012). https://doi.org/10.1016/j.matdes.2012.03.053

    Article  Google Scholar 

  43. 43.

    Wollerdorfer, M., Bader, H.: Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind. Crops Prod. 8(2), 105–112 (1998). https://doi.org/10.1016/S0926-6690(97)10015-2

    Article  Google Scholar 

  44. 44.

    Morreale, M., Scaffaro, R., Maio, A., La Mantia, F.P.: Effect of adding wood flour to the physical properties of a biodegradable polymer. Compos. Part A 39(3), 503–513 (2008). https://doi.org/10.1016/j.compositesa.2007.12.002

    Article  Google Scholar 

  45. 45.

    Kabir, M.M., Wang, H., Lau, K.T., Cardona, F.: Composites : part B chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos. Part B 43(7), 2883–2892 (2012). https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  Google Scholar 

  46. 46.

    Balla, V.K., Kate, K.H., Satyavolu, J., Singh, P., Tadimeti, J.G.D.: Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos. Part B 174(May), 106956 (2019). https://doi.org/10.1016/j.compositesb.2019.106956

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ibáñez-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibáñez-García, A., Martínez-García, A. & Ferrándiz-Bou, S. Influence of Almond Shell Content and Particle Size on Mechanical Properties of Starch-Based Biocomposites. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-020-01330-9

Download citation

Keywords

  • Biocomposite
  • Natural fillers
  • Starch-based polymer
  • Almond shell powder (ASP)
  • Particle size
  • filler content