Acetone, Butanol, Ethanol and, Xylitol Production Through a Biorefinery Platform: An Experimental & Simulation Approach

Abstract

Purpose

Butanol is an interesting biofuel and a product precursor, that could be obtained with acetone and ethanol via fermentation. The biofuels production has been identified as not economically competitive, thus, the parallel production of high value-added products, such as xylitol, could be an alternative to improve the profit. Xylitol can be produced from xylose, which might be considered as a coproduct in a second generation biorefinery.

Methods

This study presents a systematic biorefinery process design for the simultaneous acetone, butanol, ethanol (ABE) and xylitol production, based on experimental and simulation approaches. Experiments were performed for the pretreatment of sugarcane bagasse and ABE fermentation. The simulation part used the experimental results and experimental data from literature, to perform rigorous calculations of the ABE and xylitol production process. The economic analysis (EA) was performed relying on some indicators such as, the net present value (NPV) and payback period (PBP); EA includes several scenarios for producing only ABE and some scenarios for simultaneous ABE and xylitol production.

Results

The results showed that the combined butanol and xylitol production could reduce by 17% the selling price of butanol, compared with only producing butanol. The study also included the combustion of residual solids and carbon dioxide depletion analyses.

Conclusion

This approach illustrates the opportunity to perform a rigorous techno-economic analysis, to identify the feasibility of the process at industrial scale, based on realistic data. This approach was implemented for ABE and xylitol production, but it can be used to any other bioproduct.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ABE:

Acetone, butanol and ethanol

BO:

Batch operation

BT:

Bottom temperature

CC:

Cellulose conversion

CO:

Continuous operation

DB:

Dry bagasse

EH:

Enzymatic hydrolysis

FLP:

First liquid phase

FS:

Feed stage location

G:

Glucose

GC:

Glucose conversion

HB:

Humid bagasse

HC:

Hemicellulose conversion

IRR:

Internal rate of return

KC:

Key compound

NPV:

Net present value

NS:

Number of stages

P:

Pressure

PBP:

Payback period

PC:

Partial condenser

PI:

Pressure increase

PT:

Pretreatment

ROI:

Return of investment

RR:

Reflux ratio

RT:

Reacting time

SAC:

Sulfuric acid conversion

SLP:

Second liquid phase

T:

Temperature

TT:

Top temperature

VS:

Vessel size

VN:

Vessels number

XC:

Xylose conversion

References

  1. 1.

    IEA: Tracking Transport, www.iea.org/reports/tracking-transport-2019

  2. 2.

    Mariano, A.P., Dias, M.O.S., Junqueira, T.L., Cunha, M.P., Bonomi, A., Filho, R.M.: Butanol production in a first-generation Brazilian sugarcane biorefinery: Technical aspects and economics of greenfield projects. Bioresour. Technol. (2013). https://doi.org/10.1016/j.biortech.2012.09.109

    Article  Google Scholar 

  3. 3.

    Anbarasan, P., Baer, Z.C., Sreekumar, S., Gross, E., Binder, J.B., Blanch, H.W., Clark, D.S., Dean Toste, F.: Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491, 235–239 (2012). https://doi.org/10.1038/nature11594

    Article  Google Scholar 

  4. 4.

    Kumar, B., Kumar, S., Kumar, S.: Thermodynamic analysis of H2 production by oxidative steam reforming of butanol-ethanol-water mixture recovered from Acetone:Butanol: Ethanol fermentation. Int. J. Hydrogen Energy. 43, 6491–6503 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.058

    Article  Google Scholar 

  5. 5.

    Morales-Rodriguez, R., Perez-Cisneros, E.S., de Los Reyes-Heredia, J.A., Rodriguez-Gomez, D.: Evaluation of biorefinery configurations through a dynamic model-based platform: Integrated operation for bioethanol and xylitol co-production from lignocellulose. Renew. Energy. (2016). https://doi.org/10.1016/j.renene.2015.12.019

    Article  Google Scholar 

  6. 6.

    Morales-Rodriguez, R., Meyer, A.S., Gernaey, K.V., Sin, G.: Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose. Bioresour. Technol. 102, 1174–1184 (2011). https://doi.org/10.1016/j.biortech.2010.09.045

    Article  Google Scholar 

  7. 7.

    Alvarado-Morales, M., Terra, J., Gernaey, K.V., Woodley, J.M., Gani, R.: Biorefining: Computer aided tools for sustainable design and analysis of bioethanol production. Chem. Eng. Res. Des. 87, 1171–1183 (2009). https://doi.org/10.1016/j.cherd.2009.07.006

    Article  Google Scholar 

  8. 8.

    Prado-Rubio, O.A., Morales-Rodríguez, R., Andrade-Santacoloma, P., Hernández-Escoto, H.: Process Intensification in Biotechnology Applications. In: Segovia-Hernández, A.B.P.J.G. (ed.) Process Intensification in Chemical Engineering, pp. 183–219. Springer International Publishing, Cham (2016)

    Google Scholar 

  9. 9.

    Boonsombuti, A., Trisinsub, O., Luengnaruemitchai, A.: Comparative Study of Three Chemical Pretreatments and Their Effects on the Structural Changes of Rice Straw and Butanol Production. Waste and Biomass Valorization. (2020). https://doi.org/10.1007/s12649-019-00622-z

    Article  Google Scholar 

  10. 10.

    Prado-Rubio, O.A., Rodriguez-Gomez, D., Morales-Rodriguez, R.: Model-Based Approach to Enhance Configurations for 2G Butanol Production through ABE Process. Recent Innov. Chem. Eng. 11, 99–111 (2018). https://doi.org/10.2174/2405520411666180501112354

    Article  Google Scholar 

  11. 11.

    Heitmann, S., Stoffers, M., Lutze, P.: Integrated processing for the separation of biobutanol. Part B: Model-based process analysis. Green Process. Synth. 2, 121–141 (2013). https://doi.org/10.1515/gps-2013-0021

    Article  Google Scholar 

  12. 12.

    Luyben, W.L.: Control of the Heterogeneous Azeotropic n-Butanol/Water Distillation System. Energy Fuels 22, 4249–4258 (2008). https://doi.org/10.1021/ef8004064

    Article  Google Scholar 

  13. 13.

    Kraemer, K., Harwardt, A., Bronneberg, R., Marquardt, W.: Separation of butanol from acetone-butanol-ethanol fermentation by a hybrid extraction-distillation process. In: Pierucci, S., Ferraris, G.B.B.T.-C.A.C.E. (eds.) 20 European Symposium on Computer Aided Process Engineering. pp. 7–12. Elsevier (2010). https://doi.org/10.1016/S1570-7946(10)28002-1

  14. 14.

    Errico, M., Sanchez-Ramirez, E., Quiroz-Ramìrez, J.J., Segovia-Hernandez, J.G., Rong, B.-G.: Synthesis and design of new hybrid configurations for biobutanol purification. Comput. Chem. Eng. 84, 482–492 (2016). https://doi.org/10.1016/j.compchemeng.2015.10.009

    Article  Google Scholar 

  15. 15.

    Qureshi, N., Hughes, S., Maddox, I.S., Cotta, M.A.: Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst. Eng. 27, 215–222 (2005). https://doi.org/10.1007/s00449-005-0402-8

    Article  Google Scholar 

  16. 16.

    Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J. Microbiol. Biotechnol. 19, 595–603 (2003). https://doi.org/10.1023/A:1025103011923

    Article  Google Scholar 

  17. 17.

    Sanchez, A., Sanchez, S., Dueñas, P., Hernandez-Sanchez, P., Guadalajara, Y.: The Role of Sustainability Analysis in the Revalorization of Tequila Residues and Wastes Using Biorefineries. Waste and Biomass Valorization. (2020). https://doi.org/10.1007/s12649-019-00756-0

    Article  Google Scholar 

  18. 18.

    del Castillo-Romo, A.Á, Morales-Rodriguez, R., Román-Martínez, A.: Multi-objective optimization for the biotechnological conversion of lingocellulosic biomass to value-added products. In: Kravanja, Z., Bogataj, M.B.T.-C.A.C.E. (eds.) 26 European Symposium on Computer Aided Process Engineering. pp. 1515–1520. Elsevier (2016). https://doi.org/10.1016/B978-0-444-63428-3.50257-5

  19. 19.

    del Castillo-Romo, A.Á, Morales-Rodriguez, R., Román-Martínez, A.: Multiobjective optimization for the socio-eco-efficient conversion of lignocellulosic biomass to biofuels and bioproducts. Clean Technol. Environ. Policy. (2018). https://doi.org/10.1007/s10098-018-1490-x

    Article  Google Scholar 

  20. 20.

    Granström, T.B., Izumori, K., Leisola, M.: A rare sugar xylitol. Part I: The biochemistry and biosynthesis of xylitol. Appl. Microbiol. Biotechnol. 74, 277–281 (2007). https://doi.org/10.1007/s00253-006-0761-3

    Article  Google Scholar 

  21. 21.

    Herskowitz, M.: Modelling of a trickle-bed reactor—the hydrogenation of xylose to xylitol. Chem. Eng. Sci. 40, 1309–1311 (1985). https://doi.org/10.1016/0009-2509(85)85091-0

    Article  Google Scholar 

  22. 22.

    Prado-Rubio, O.A., Hernández-Escoto, H., Rodriguez-Gomez, D., Sirisansaneeyakul, S., Morales-Rodriguez, R.: Enhancing xylitol bio-production by an optimal feeding policy during fed-batch operation. In: 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering. pp. 1757-1762. Elsevier (2015). https://doi.org/10.1016/B978-0-444-63577-8.50138-8

  23. 23.

    Tochampa, W., Sirisansaneeyakul, S., Vanichsriratana, W., Srinophakun, P., Bakker, H.H.C., Chisti, Y.: A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst. Eng. 28, 175–183 (2005). https://doi.org/10.1007/s00449-005-0025-0

    Article  Google Scholar 

  24. 24.

    Santibañez-Aguilar, J.E., Morales-Rodriguez, R., González-Campos, J.B., Ponce-Ortega, J.M.: Stochastic design of biorefinery supply chains considering economic and environmental objectives. J. Clean. Prod. 136, 224–245 (2016). https://doi.org/10.1016/j.jclepro.2016.03.168

    Article  Google Scholar 

  25. 25.

    Samarti-Rios, L., Sánchez-Morales, M., Avalos-Farfán, S.: A Process Design for Acetone, Butanol and Ethanol Production through a biological Route [Diseño de una planta para la producción de Acetona, Butanol y Etanol a través de una ruta biológica]. Thesis. Universidad Autónoma Metropolitana-Iztapalapa, (2014)

  26. 26.

    Abdullah, N., Ejaz, N., Abdullah, M., Nisa, F.S.: Lignocellulosic degradation in solid-state fermentation of sugar cane bagasse by Termitomyces sp. Micol. Apl. Int. 18, 15–19 (2006)

    Google Scholar 

  27. 27.

    Hijosa-Valsero, M., Garita-Cambronero, J., Paniagua-García, A.I., Díez-Antolínez, R.: A global approach to obtain biobutanol from corn stover. Renew. Energy. (2020). https://doi.org/10.1016/j.renene.2019.12.026

    Article  Google Scholar 

  28. 28.

    Carvalho, A.F.A., Marcondes, W.F., de Neto, O.P., Pastore, G.M., Saddler, J.N., Arantes, V.: The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse. Bioresour Technol. (2018). https://doi.org/10.1016/j.biortech.2017.11.041

    Article  Google Scholar 

  29. 29.

    Miller, G.L.: Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  30. 30.

    CDBB: National collection of microbial strains and cellcutures [Colección Nacional de cepas microbianas y cultivos celulares], http://cdbb.cinvestav.mx/

  31. 31.

    Samarti-Rios, L., Sánchez-Morales, M., Avalos-Farfán, S., Rodriguez-Gomez, D., Loera-Corral, O., Favela-Torres, E., Morales-Rodriguez, R.: Experimental Analysis for Acetone, Butanol and Ethanol Production using sugar industry residues [Análisis Experimental para la Producción de Acetona, Butanol y Etanol a partir de Residuos de la Industria Azucarera]. In: Proceedings of the National meeting of AMIDIQ. pp. 1337–1342. , Puerto Vallarta, Mexico (2014)

  32. 32.

    Xiao, Z., Storms, R., Tsang, A.: Microplate-Based Filter Paper Assay to Measure Total Cellulase Activity. Biotechnol. Bioeng. (2004). https://doi.org/10.1002/bit.20286

    Article  Google Scholar 

  33. 33.

    Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A., Yoshino, S.: High butanol production by Clostridium saccharoperbutylacetonicum N1–4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng. 98, 263–268 (2004). https://doi.org/10.1016/S1389-1723(04)00279-8

    Article  Google Scholar 

  34. 34.

    Tsai, C.T., Morales-Rodriguez, R., Sin, G., Meyer, A.S.: A dynamic model for cellulosic biomass hydrolysis: A comprehensive analysis and validation of hydrolysis and product inhibition mechanisms. Appl. Biochem. Biotechnol. 172, 2815–2837 (2014). https://doi.org/10.1007/s12010-013-0717-x

    Article  Google Scholar 

  35. 35.

    Gu, Y., Li, J., Zhang, L., Chen, J., Niu, L., Yang, Y., Yang, S., Jiang, W.: Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J. Biotechnol. (2009). https://doi.org/10.1016/j.jbiotec.2009.08.009

    Article  Google Scholar 

  36. 36.

    Chen, Y., Zhou, T., Liu, D., Li, A., Xu, S., Liu, Q., Li, B., Ying, H.: Production of butanol from glucose and xylose with immobilized cells of Clostridium acetobutylicum. Biotechnol. Bioprocess Eng. (2013). https://doi.org/10.1007/s12257-012-0573-5

    Article  Google Scholar 

  37. 37.

    Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. (1968). https://doi.org/10.1002/aic.690140124

    Article  Google Scholar 

  38. 38.

    George Hayden, J., O’Connell, J.P.: A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process Des. Dev. 14, 209–216 (1975). https://doi.org/10.1021/i260055a003

    Article  Google Scholar 

  39. 39.

    Wooley, R.J., Putsche, V.: Development of an ASPEN PLUS Physical Property Database for Biofuels Components. NREL/TP-425–20685. (1996)

  40. 40.

    Morales-Espinosa, N., Sánchez-Ramírez, E., Quiroz-Ramírez, J.J., Segovia-Hernández, J.G., Gómez-Castro, F.I., Morales-Rodriguez, R.: A framework for an optimized sustainable product and process design: Acetone-Butanol-Ethanol separation and purification. In:Espuña, A., Graells, M., Puigjaner, L.B.T.C.A.C.E. (eds.) 27 European Symposium on Computer Aided Process Engineering. Elsevier, Amsterdam, pp. 697–702. Elsevier (2017). https://doi.org/10.1016/B978-0-444-63965-3.50118-5

  41. 41.

    SIE: Sistema de información Energética, http://sie.energia.gob.mx

  42. 42.

    Mountraki, A.D., Koutsospyros, K.R., Mlayah, B.B., Kokossis, A.C.: Selection of Biorefinery Routes: The Case of Xylitol and its Integration with an Organosolv Process. Waste and Biomass Valorization. 8, 2283–2300 (2017). https://doi.org/10.1007/s12649-016-9814-8

    Article  Google Scholar 

  43. 43.

    Alibaba: Industrial products price, https://www.alibaba.com/

  44. 44.

    Larsen, J., Østergaard Petersen, M., Thirup, L., Wen Li, H., Krogh Iversen, F.: The IBUS Process – Lignocellulosic Bioethanol Close to a Commercial Reality. Chem. Eng. Technol. 31, 765–772 (2008). https://doi.org/10.1002/ceat.200800048

    Article  Google Scholar 

  45. 45.

    Alonso Pippo, W., Garzone, P., Cornacchia, G.: Agro-industry sugarcane residues disposal: The trends of their conversion into energy carriers in Cuba. Waste Manag. 27, 869–885 (2007). https://doi.org/10.1016/j.wasman.2006.05.001

    Article  Google Scholar 

  46. 46.

    Hernández-Escoto, H., Prado-Rubio, O.A., Morales-Rodriguez, R.: Model-based framework for enhanced and controlled operation of a fed-batch bioreactor: xylitol production. In: Kravanja, Z., Bogataj, M.B.T.-C.A.C.E. (eds.) 26 European Symposium on Computer Aided Process Engineering. pp. 301–306. Elsevier (2016). https://doi.org/10.1016/B978-0-444-63428-3.50055-2

  47. 47.

    Morales-Rodriguez, R., Rodriguez-Gomez, D., Sales-Cruz, M., de los Reyes-Heredia, J.A., Pérez Cisneros, E.S.: Model-Based analysis for acetone-butanol-ethanol production process through a dynamic simulation. In: Klemeš, J.J., Varbanov, P.S., Liew, P.Y. (eds.) 24 European Symposium on Computer Aided Process Engineering. Elsevier, Amsterdam, pp. 133–138. Elsevier (2014). https://doi.org/10.1016/B978-0-444-63456-6.50023-5

    Google Scholar 

  48. 48.

    López-Plaza, E.L., Hernández, S., Barroso-Muñoz, F.O., Segovia-Hernández, J.G., Aceves, S.M., Martínez-Frías, J., Saxena, S., Dibble, R.: Experimental and Theoretical Study of the Energy Savings from Wet Ethanol Production and Utilization. Energy Technol. 2, 440–445 (2014). https://doi.org/10.1002/ente.201300180

    Article  Google Scholar 

Download references

Acknowledgement

The authors also acknowledge the “Ingenio Motzorongo S.A. de C.V.” for providing the lignocellulosic feedstock to perform the experiments.

Funding

The authors kindly acknowledge the partial financial support by Universidad de Guanajuato, Universidad Autónoma Metropolitana-Iztapalapa and the Mexican Bioenergy Innovation Centre, Bioalcohols Cluster (249564).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Divanery Rodriguez-Gomez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morales-Rodriguez, R., Ponce-Rocha, J.D., Gómez-Castro, F.I. et al. Acetone, Butanol, Ethanol and, Xylitol Production Through a Biorefinery Platform: An Experimental & Simulation Approach. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-020-01327-4

Download citation

Keywords

  • ABE
  • Xylitol
  • Energy transfer
  • Value-added products
  • Profit
  • Net present value