Paper Production from Mauritian Hemp Fibres



The study examines the potential of Mauritian hemp (Furcraea foetida L.), a lignocellulosic non-wood biomass, as a more environmental friendly substitute to virgin wood for printing paper production.


The best pulping method for Mauritian hemp was first investigated. A4 sized papers were then produced using 100% Mauritian hemp fibres and mixtures of Mauritian hemp fibres with Elephant grass fibres and wastepaper. Using Standard tests, the physical (thickness, grammage, apparent density, water absorbency) and mechanical (tensile strength, burst strength, crease recovery, abrasion resistance) properties of the papers produced were evaluated and compared with those of an 80 gsm A4 commercial printing paper used as control. Lastly, internal sizing was done by adding different proportions of starch to the paper whose properties were closest to the control (judged most printable) to investigate any property enhancement.


Soda cooking with 12% Wt/V NaOH solution at a temperature of 90 °C for 90 min was found best for pulping Mauritian hemp. The 100% Mauritian hemp paper had characteristics closest to the control, with apparent density 141.54 kg/m3, water absorbency time 1.436 s, burst strength 0.323 kPa m2/g, tensile strength 10.97 Nm/g, abrasion resistance 37.5 cycles before rupture and crease recovery angle 34.8°. Increasing the starch content from 10 to 40% caused the 100% Mauritian hemp paper’s characteristics to increasingly approach those of the control, thus showing printability improvement.


The methodologies adopted for papermaking and testing demonstrated that Mauritian hemp is a suitable alternative to wood to produce good quality printing paper.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Reddy, K.O., Maheswari, C.U., Shukla, M., Muzenda, E.: Preparation, chemical composition, characterisation, and properties of napier grass paper sheets. Sep. Sci. Technol. 49, 1527–1534 (2014).

    Article  Google Scholar 

  2. 2.

    Sahin, H.T., Arslan, M.B.: A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. Int. J. Mol. Sci. 9, 78–88 (2008).

    Article  Google Scholar 

  3. 3.

    Environment Paper Network (EPN). The state of the global paper industry (2018). Accessed 23 October 2018

  4. 4.

    Ashori, A.: Nonwood fibers—a potential source of raw material in papermaking. Polymer-Plast. Technol. Eng. 45(10), 1133–1136 (2006).

    Article  Google Scholar 

  5. 5.

    Rainey TJ, Covey G, Pulp and paper production from sugarcane bagasse. In: O’Hara IM, Mundree SG. Sugarcane-Based Biofuels and Bioproducts, Hoboken, pp. 259–277. John Wiley & Sons Inc , New Jersey (2016)

  6. 6.

    Elias P, Boucher D. planting for the future how demand for wood products could be friendly to tropical forests. union of concerned scientists. (2014). Accessed 20 September 2018

  7. 7.

    Bardhan, S.K., Gupta, S., Gorman, M.E., Haider, A.: Biorenewable chemicals: Feedstocks, technologies and the conflict with food production. Renew. Sustain. Energy Rev. 51, 506–520 (2015).

    Article  Google Scholar 

  8. 8.

    Soliman, A.S., Shehata, M.S., Ahmad, F., Abdel-Atty, M.: Evaluation of Paper Pulp and Paper Making Characteristics Produced from Different African Woody Trees Grown in Egypt. Research Journal of Forestry 11, 19–27 (2017).

    Article  Google Scholar 

  9. 9.

    Obst J, Lignins: Structure and distribution in wood and pulp. In: Caulfield DF, Passaretti JD, Sobczynski SF, eds, Materials interactions relevant to the pulp, paper, and wood industries: Proceedings, Materials Research Society symposium, Vol. 197, pp. 11–20.. Materials Research Society, San Francisco, CA. Pittsburgh (1990)

  10. 10.

    Bajpai P, Biermann's Handbook of Pulp and Paper, Volume 2: Paper and Board Making. 3 Edition, Elsevier (2018).

  11. 11.

    Food and agriculture organization of the united nations (FAO). FAO forestry trade flows (2014). Accessed 20 September 2018.

  12. 12.

    Olengeile J. The economics of paper use and its implications to the environment: a case study of sokoine university of agriculture, tanzania. sokoine university of agriculture. (2016). Accessed 20 September 2018.

  13. 13.

    World Wildlife Fund. Threats: Deforestation. World Wildlife Fund, Washington DC. (2019). Accessed 05 January 2019.

  14. 14.

    Cabalova I, Kacik F, Geffert A, Kacikova D. the effects of paper recycling and its environmental impact. In: Broniewicz, E., Environmental Impact in Practice. Conservatree (2011).

  15. 15.

    Howard RC. Effects of recycling on pulp quality. In: McKinney, R, Technology of Paper Recycling, pp. 180–202. Chapman & Hall, Great Britain (1995).

  16. 16.

    Paasen SVB, Cieplik MK, Phokawat MP. Gasification of non-woody biomass economic and technical perspectives of chlorine and sulphur removal from product gas (non-confidential version), energy research centre of the Netherlands. (2006). Accessed 20 September 2018.

  17. 17.

    Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., Santas, R.: Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod. 19, 245–254 (2004).

    Article  Google Scholar 

  18. 18.

    CABI. Invasive species compendium. Wallingford, UK: CAB International. (2019). Accessed on: 20 January 2019.

  19. 19.

    D. M. Mauritius Hemp. Bulletin of miscellaneous information (Royal Botanic Gardens, Kew). 1887(3), 8–10 (1887).

  20. 20.

    Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Juwaid M. Study on characterization of Furcraea Foetida new natural fiber as composite reinforcement for lightweight applications. carbohydrate polymers, 181 (2017).

  21. 21.

    Pettersen RC. The chemical composition of wood. In: Rowell, R., The Chemistry of Solid Wood, pp. 57–126. American Chemical Society, Washington DC (1984).

  22. 22.

    Ramana S, Biswas AK, Singh AB, Ajay, Ahirwar NK, Prasad RD, Srivastava S. Potential of Mauritius Hemp (Furcraea gigantea Vent.) for the Remediation of Chromium Contaminated Soils. Int. J. Phytoremed., 17(7), 709–715 (2015).

  23. 23.

    Ibarra D, Kopcke V, Larsson PT, Jääskeläinen A, EK M. Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Biores. Technol., 101(19), 7416–7423, (2010).

  24. 24.

    Hu, G., Fu, S., Liu, H.: Hemicellulose in pulp affects paper properties and printability. Appita J. 66(2), 139–144 (2013)

    Google Scholar 

  25. 25.

    Daud, Z., Hatta, M.Z.M., Kassim, A.S.M., Aripin, A.M.: Analysis of the chemical compositions and fiber morphology of pineapple (Ananas comosus) leaves in Malaysia. J. Appl. Sci. 14(12), 1355–1358 (2014).

    Article  Google Scholar 

  26. 26.

    Azeez, A.M.: Pulping of non-woody biomass. IntechOpen (2018).

    Article  Google Scholar 

  27. 27.

    Chauhan, V.S., Singh, S.P., Bajpai, P.: Fiber loading of hardwood pulp by in-situ precipitation of aluminosilicate. BioResources 2(4), 560–571 (2007)

    Google Scholar 

  28. 28.

    Madakadze, I.C., Masamvu, T.M., Radiotis, T., Li, J., Smith, D.L.: Evaluation of pulp and paper making characteristics of elephant grass (Pennisetum purpureum Schum) and switchgrass (Panicum virgatum L). African J. Enviro. Sci. Technol. 4(7), 465–470 (2010)

    Google Scholar 

  29. 29.

    Ramdhonee, A., Jeetah, P.: Production of wrapping paper from banana fibres. Journal of Environmental Chemical Engineering. 5, 4298–4306 (2017).

    Article  Google Scholar 

  30. 30.

    Sinha, A. S. K. Caustic Soda Delignification of Khar Grass for Separation of Cellulosic Fibers. In: International Conference on Advances in Environment Research [online], 2015, 41–47 (2015) Accessed 03 Feb 2020

  31. 31.

    Gomes FJB, Colodette JL, Burnet A, Ribas Batalha LA, Barbosa BM. Potential of elephant grass for pulp production, Bioresources, 8(3), 4359–4379 (2013).

  32. 32.

    Andrade MF, Colodette J. Production of printing and writing paper grade pulp from elephant grass. CERNE, 22(3) (2016).

  33. 33.

    ASTM D4442–92, 2003. ASTM D4442–92: Standard test methods for direct moisture content measurement of wood and wood-base materials. american society for testing and materials (ASTM) International, United States. (2003). Accessed 23 October 2018.

  34. 34.

    ISO 1762:2015. ISO 1762:2015(en) Paper, board and pulps — Determination of residue (ash) on ignition at 525 degrees C. International Standard Organisation (ISO). (2015). Accessed 23 October 2018.

  35. 35.

    Sibaly, S., Jeetah, P.: Production of paper from Pineapple leaves. J. Environ. Chem. Eng. 5, 5978–5986 (2017).

    Article  Google Scholar 

  36. 36.

    Jaffur N, Jeetah P. Production of low cost paper from Pandanus utilis fibres as a substitution to wood. Sustain. Environ. Res., 29(20) (2019)

  37. 37.

    Wutisatwongkul J, Thavarungkul N, Tiansuwan J, Termsuksawad P. Influence of soda pulping variables on properties of pineapple (Ananas comosus Merr.) leaf pulp and paper studied by face-centered composite experimental design. Adv. Mater. Sci. Eng., (2016)

  38. 38.

    Abdel-AAL, M.A.: Effect of cooking time, active alkali concentration and refining process on the pulping and papermaking properties of buttonwood residues (Conocarpus erectus L.). World Appl. Sci. J. 27(1), 1–9 (2013)

    Google Scholar 

  39. 39.

    Zeehuisen JJ. Production of textile fibers from bast fiber material by alkaline digestion. in: united states patent office, official gazette of the United States patent office, Volume 670, 1116, (1953)

  40. 40.

    Sanchez, R., Rodriguez, A., Requejo, A., Ferrer, A., Navarro, E.: Soda pulp and fuel gases synthesis from Hesperaloe funifera. Biores. Technol. 101(18), 7043–7051 (2010).

    Article  Google Scholar 

  41. 41.

    Brännvall, E., Bäckström, M.: Improved impregnation efficiency and pulp yield of softwood kraft pulp by high effective alkali charge in the impregnation stage. Holzforschung 70(11), 1031–1037 (2016).

    Article  Google Scholar 

  42. 42.

    Brännvall E. Pulping Technology. In: Ek M, Gellerstedt G, Henriksson, G. Pulping Chemistry and technology, Volume 2. De Gruyter (2009).

  43. 43.

    Arsène M, Bilba K, Junior HS, Ghavami K. Treatments of non-wood plant fibres used as reinforcement in composite materials. Mater. Res., 16(4), (2013)

  44. 44.

    Zhang, L.L., Zhu, R.Y., Chen, J.Y., Chen, J.M., Feng, X.X.: Seawater-retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process Biochem. 43(11), 1195–1201 (2008).

    Article  Google Scholar 

  45. 45.

    T 205 sp-02. Forming handsheets for physical tests of pulp. Technical Association of the Pulp & Paper Industry (TAPPI). (2006). Accessed 12 October 2018.

  46. 46.

    Karlsson, A., Enberg, S., Rundölf, M., Paulsson, M., Edström, P.: Determining optical properties of mechanical pulps. Nord. Pulp Pap. Res. J. 27(3), 531–541 (2012).

    Article  Google Scholar 

  47. 47.

    ISO 187:1990. Paper, board and pulps -- Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples. International Standard Organisation (ISO). (1990). Accessed on: 15 September 2018.

  48. 48.

    T 410 om-8. Grammage of Paper and Paperboard (Weight Per Unit Area). Technical Association of the Pulp & Paper Industry (TAPPI). (2013). Accessed 24 October 2018.

  49. 49.

    T 551 om-98. Thickness of paper and paperboard (soft platen method). technical association of the pulp & paper industry (TAPPI). (1998). Accessed 23 September 2018.

  50. 50.

    T 220 sp-01. Physical testing of pulp handsheets. Technical Association of the Pulp & Paper Industry (TAPPI). (2001). Accessed 24 October 2018.

  51. 51.

    ASTM D824–94. Standard test method for rate of absorption of water by bibulous paper. American society for testing and materials (ASTM). (2002). Accessed 22 October 2018.

  52. 52.

    AATCC test method 66–2008. Wrinkle Recovery of Wooven Fabrics: Recovery Angle. American Association of Textile Chemists and Colorists (AATCC) Committee. (2008). Accessed 23 October 2018.

  53. 53.

    T 403 om-97. Bursting Strength of Paper. Technical Association of the Pulp & Paper Industry (TAPPI). (1997). Accessed 23 September 2018.

  54. 54.

    T 494 om-01. Tensile Properties of Paper and Paperboard (using constant elongation apparatus). Technical Association of the Pulp & Paper Industry (TAPPI). (2006). Accessed 24 October 2018.

  55. 55.

    T476 om-16. Abrasion Loss of Paper and Paperboard (Taber-Type Method). Technical Association of the Pulp & Paper Industry (TAPPI). (2016). Accessed 24 October 2018.

  56. 56.

    Ali, I., Ur Rehman, S., Ali, S.H., Javaid, A.: The effect of borax-modified starch on wheat straw-based paper properties. J. Appl. Polym. Sci. 128(6), 3672–3677 (2012).

    Article  Google Scholar 

  57. 57.

    Jackson B, Schroeder R, Ashton S. Drying woody biomass. (2010). Accessed 02 February 2019.

  58. 58.

    Tumuluru, J.S., Hess, J.R., Boardman, R.D., Wright, C.T., Westover, T.: Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal. Ind. Biotechnol. 8(3), 113–132 (2012).

    Article  Google Scholar 

  59. 59.

    T 211-om 02. Ash in wood, pulp, paper and paperboard: combustion at 525°C. Technical Association of the Pulp and Paper Industry (TAPPI). (2002). Accessed 22 October 2018.

  60. 60.

    Jeetah, P.: Comparing the bio-ethanol potential of concentrated acid hydrolysis, dilute acid hydrolysis and enzymatic hydrolysis from lignocellulosic biomass. Thesis (PhD). University of Mauritius (2015)

  61. 61.

    Berggren, R., Berthold, F., Sjöholm, E., Lindström, M.: Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J. Appl. Polym. Sci. 88, 1170–1179 (2003).

    Article  Google Scholar 

  62. 62.

    Khan, Z.H., Sarkar, M.A.R., Al Imam, F.L.I., Malinen, R.O.: Fiber morphology and Pulping study of Banana Pseudo-stem. Int. J. Fiber Text Res. 3(1), 31–35 (2013)

    Google Scholar 

  63. 63.

    Alagbe, E.E., Bassey, E.S., Alagbe, O.A., Efeovbokhan, V.E., Oyekunle, D.E., Oyedeko, K.F.: Comparative evaluation of the effect of chemical composition of waste okra stalk and rice husk on pulp yield. Int. J. Mech. Eng. Technol. (IJMET) 10(3), 676–682 (2016)

    Google Scholar 

  64. 64.

    Moral, A., Monte, M.C., Cabeza, E.A., Blanco, A.: Morphological characterization of pulps to control paper properties. Cell. Chem. Technol. 44(10), 473–480 (2010)

    Google Scholar 

  65. 65.

    Johansson A. Correlations between fibre properties and paper properties. Thesis (Master). KTH, School of Chemical Science and Engineering. (2011). Accessed 07 January 2019.

  66. 66.

    Ainun ZMA, Muhammad KI, Rasmina H, Hazwani HA, Sharmiza A, Naziratulasikin AK, Latifah J. Effect of chemical pretreatment on pulp and paper characteristics of bamboo gigantochloa scorthechinii kraft fibers. In: The Wood and Biofiber International Conference (WOBIC 2017), IOP Conf. Series: Materials Science and Engineering, 2018, IOP Publishing, 368 (2018).

  67. 67.

    Anjos, O., Garcia-Gonzalo, E., Santos, A.J.A., Simoes, R., Martinez, J., Pereira, H., Nieto, P.J.G.: Using apparent density of paper from hardwood kraft pulps to predict sheet properties, based on unsupervised classification and multivariable regression techniques. BioResources 10(3), 5920–5931 (2015)

    Article  Google Scholar 

  68. 68.

    Wathén R. Studies on fiber strength and its effect on paper properties. Thesis (DSc) Helsinki University of Technology. (2006). Accessed 17 Feb 2019

  69. 69.

    Lee J. How to avoid and reduce paper jams in your printer and copier. Meridian imaging solutions, general washington drive, Alexandria. (2016). Accessed 04 February 2019.

  70. 70.

    Inamuddin Thomas S, Mishra RK, Asiri AM. Sustainable polymer composites and nanocomposites. Springer Nature, Switzerland (2019)

  71. 71.

    Pan Y, Yang S. Wetting and liquid absorption characteristics of ink jet paper. In: E. Hanson, Recent Progress in Ink Jet Technologies II. Society for Imaging Science and Technology, pp. 486–490. (1999). Accessed 23 November 2018.

  72. 72.

    Lindner, M.: Factors affecting the hygroexpansion of paper. J. Mater. Sci. 53(1), 1–26 (2018).

    Article  Google Scholar 

  73. 73.

    Ramadevi, P., Sampathkumar, D., Srinivasa, C.V., Bennehalli, B.: Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 7(3), 3515–3524 (2012)

    Google Scholar 

  74. 74.

    Jannah, M., Mariatti, M., Abu Bakar, A., Abdul Khalil, H.P.S.: Effect of chemical surface modifications on the properties of woven banana-reinforced unsaturated polyester composites. J. Reinf. Plast. Comp. 28(12), 1519–1532 (2009)

    Article  Google Scholar 

  75. 75.

    Rioux WR. The rate of fluid absorption in porous media. Thesis (MSc). The University of Maine. (2003). Accessed 25 February 2019.

  76. 76.

    Petroudy SRD. Physical and mechanical properties of natural fibers.In: Eds M Fan, F FU, Advanced High Strength Natural Fibre Composites in Construction, Vol 3, pp. 59-83, Woodhead Publishing Elsevier, (2017)

  77. 77.

    Sim, K., Youn, H.J., Oh, K.D., Lee, H.L., Han, C.S., Yeu, S.U., Lee, Y.M.: Fold cracking of coated paper: the effect of pulp fiber composition and beating. Nord. Pulp Pap. Res. J. 27(2), 445–450 (2012).

    Article  Google Scholar 

  78. 78.

    T-807. Bursting strength of paperboard and linerboard. Technical Association of the Pulp and Paper Industry (TAPPI). (1994). Accessed 01 February 2019.

  79. 79.

    Minor JL, Attala RH. Strength loss in recycled fibers and methods of restoration. In: Eds Rowell RM, Laufenberg TL, Rowell JK, Materials interactions relevant to recycling of wood-based materials: Proceedings of Materials Research Society symposium, Vol. 266, pp. 215–228. Materials Research Society, San Francico, CA. Pittsburg, PA (1992).

  80. 80.

    Fidelis, M.E.A., Pereira, T.V.C., Gomes, O.F.M., Silva, F.A., Filho, R.D.T.: The effect of fiber morphology on the tensile strength of natural fibers. J.Mater. Res. Technol. 2(2), 149–157 (2013).

    Article  Google Scholar 

  81. 81.

    Seth RS. Fibre quality factors in papermaking — I The Importance of Fibre Length and Strength. MRS Online Proceeding Library Archive, 197 (1990).

  82. 82.

    Tutuş A, Gültekin S, Çiçekler M. Effects of Using Starch at Size Press on Physical and Optical Properties of Some Packing Papers. In: 1st International Conference on Engineering Technology and Applied Sciences, 21–22 April 2016. Afyon Kocatepe University, Turkey. 111–116. (2016). Accessed 02 Feb 2019

  83. 83.

    Abdullah, I., Blackburn, R.S., Russell, S.J., Taylor, J.: Abrasion phenomena in twill tencel fabric. J. Appl. Polym. Sci. 102, 1391–1398 (2006).

    Article  Google Scholar 

  84. 84.

    Shebani, A., Pislaru, C.: Wear measuring and wear modelling based on archard, astm, and neural network models. Int. J. Mech. Mechatron. Eng. 9(1), 177–182 (2015).

    Article  Google Scholar 

  85. 85.

    Borodulina S. Micromechanics of fiber networks. Thesis (PhD). KTH School of Engineering Sciences. (2016). Accessed 04 February 2019.

  86. 86.

    Deshpande, M.S.: Printing papers: sizing and its role. J. Eng. Res. Stud. 2(2), 17–21 (2011)

    Google Scholar 

  87. 87.

    Hubbe, M.: Paper's resistance to wetting: a review of internal sizing chemicals and their effects. BioResources 2(1), 106–145 (2006)

    Google Scholar 

  88. 88.

    Radley RW. Industrial uses of starch and its derivatives. Appl. Sci. Publ. Ltd, London (1976).

  89. 89.

    Carson, F.T., Worthington, V.: Stiffness of paper. J. Res.Nat. Bureau of Stand. 49(6), 385–391 (1952)

    Article  Google Scholar 

  90. 90.

    Younis W. Up and Running with Autodesk Inventor Simulation 2011: A step-by-step guide to engineering design solutions, 2 Edition. Elsevier Inc., USA (2010).

  91. 91.

    Robertson GL. Food packaging: principles and practice. Marcel Dekker Inc., Madison Avenue, New York (1993)

  92. 92.

    Kirwan, M.J.: Handbook of Paper and Paperboard Packaging Technology, 2nd edn. John Wiley & Sons Ltd, UK (2012)

    Google Scholar 

  93. 93.

    Liang, G., Schmauder, S., Lyu, M., Schneider, Y., Zhang, C., Han, Y.: An investigation of the influence of initial roughness on the friction and wear behavior of ground surfaces. Materials 11, 237 (2018).

    Article  Google Scholar 

  94. 94.

    Henry W, Albro T, Ash N, Baker C, Barger S, Barrett T, Dwan A, Espinosa R, Garlick K, Hamburg D, Meierjames B, Munn J, Nicholson K. Orlenko K, Rogers Albro S, Vitale T. Sizing/resizing. In: Paper Conservation Catalog. American Institute for Conservation Book and Paper Group, Washington D.C. (1988)

  95. 95.

    Twede, D., Selke, S.E.M., Kamdem, D.P., Shires, D.: Cartons, Crates and Corrugated Board: Handbook of wood packaging technology, 2nd edn. DEStech Publications Inc, Pennsylvania, USA (2015)

    Google Scholar 

  96. 96.

    Stachowiak, G.W., Batchelor, A., Stachowiak, G.B.: Experimental Methods in Tribology, vol. 44. Elsevier B.V, The Netherlands (2004)

    Google Scholar 

  97. 97.

    DiSantis N. Rub, fold, and abrasion resistance testing of digitally printed documents. Thesis (MSc). Rochester Institute of Technology. (2007). Accessed 24 February 2019.

  98. 98.

    Brink M, Archigan-Dako EG. Plant resources of tropical Africa 16. Fibres. Netherlands: Plant Resources of Tropical Africa (PROTA), (2012)

  99. 99.

    Vaughan G. Furcraea foetida (L.) Haw [online]. In: M. Brink and E. G. Achigan-Dako., Fibres, Wageningen, Netherlands: PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), (2011)

  100. 100.

    Tang, J.P., Lam, H.L., Aziz, M.K.A., Morad, N.A.: Biomass characteristics index: a numerical approach in palm bio-energy estimation. Comp. Aided Chem. Eng. [online] 33, 1093–1098 (2014).

    Article  Google Scholar 

  101. 101.

    Chutrtong, J., Chutrtong, W.: Paper for chromatographic technique from coconut pulp cellulose. Proc. Manuf. 32, 968–974 (2019).

    Article  Google Scholar 

  102. 102.

    Tripathy, S.K., Mishra, O.P., Bhardwaj, N., Varadhan, R.: Pulp and papermaking properties of bamboo species melocanna baccifera. Cell. Chem. Technol. 52(1–2), 81–88 (2018)

    Google Scholar 

  103. 103.

    Owolabi AL, Megat-Yusof PSM. Characterization and Analysis of Extraction Process-parameter of Pandanus tectorius (Screw-pine) Natural Fiber for Polymer Composites. J. Mater Sci Eng, 7(1), (2018)

Download references

Author information



Corresponding author

Correspondence to Pratima Jeetah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 341 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amode, N.S., Jeetah, P. Paper Production from Mauritian Hemp Fibres. Waste Biomass Valor (2020).

Download citation


  • Mauritian hemp fibre
  • Printing paper production
  • Non-wood biomass
  • Mechanical properties
  • Physical properties
  • Starch internal sizing