Ecological Assessment of Industrial Waste as a High-Potential Component of Slurry Fuels

Abstract

Statistical analysis findings are presented for typical industrial waste accumulated in the Extreme North and the Arctic, as well as abandoned industrial regions. The analysis has been performed of industrial waste formation in regions exporting energy resources (coal, oil, and gas). A group of waste has been identified that is accumulated in the largest volumes. Advanced methods of its recycling are considered. Advantages and limitations of these methods are outlined. An approach is suggested that is based on preparing slurry fuels from industrial waste by adding water. Laboratory experiments with such slurry fuels have been conducted. Typical values of the following energy performance characteristics are determined: ignition delay times, minimum threshold temperature of combustion initiation, maximum combustion temperature, and heat of combustion. Anthropogenic emission concentrations have been measured (the most hazardous of them are sulfur and nitrogen oxides) from the combustion of slurry fuels under study. Economic, environmental, and energy performance indicators of slurry fuels have been compared with those of conventional energy resources.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Karcher, M., Hosseini, A., Schnur, R., Kauker, F., Brown, J.E., Dowdall, M., Strand, P.: Modelling dispersal of radioactive contaminants in Arctic waters as a result of potential recovery operations on the dumped submarine K-27. Mar. Pollut. Bull. 116, 385–394 (2017). https://doi.org/10.1016/j.marpolbul.2017.01.034

    Article  Google Scholar 

  2. 2.

    Quinn, C.L., Armitage, J.M., Breivik, K., Wania, F.: A methodology for evaluating the influence of diets and intergenerational dietary transitions on historic and future human exposure to persistent organic pollutants in the Arctic. Environ. Int. 49, 83–91 (2012). https://doi.org/10.1016/j.envint.2012.08.014

    Article  Google Scholar 

  3. 3.

    Macdonal, R.W., Barrie, L.A., Bidleman, T.F., Diamond, M.L., Gregor, D.J., Semkin, R.G., Strachan, W.M., Li, Y.F., Wania, F., Alaee, M., Alexeeva, L.B., Backus, S.M., Bailey, R., Bewers, J.M., Gobeil, C., Halsall, C.J., Harner, T., Hoff, J.T., Jantunen, L.M., Lockhart, W.L., Mackay, D., Muir, D.C., Pudykiewicz, J., Reimer, K.J., Smith, J.N., Stern, G.A.: Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 254, 93–234 (2000). https://doi.org/10.1016/s0048-9697(00)00434-4

    Article  Google Scholar 

  4. 4.

    McWatters, R.S., Rutter, A., Rowe, R.K.: Geomembrane applications for controlling diffusive migration of petroleum hydrocarbons in cold region environments. J. Environ. Manage. 181, 80–94 (2016). https://doi.org/10.1016/j.jenvman.2016.05.065

    Article  Google Scholar 

  5. 5.

    Arctic Climate Impact Assessment (ACIA). Presented at the (2005)

  6. 6.

    Zheng, J., Chen, B., Thanyamanta, W., Hawboldt, K., Zhang, B., Liu, B.: Offshore produced water management: A review of current practice and challenges in harsh/Arctic environments. Mar. Pollut. Bull. (2016). https://doi.org/10.1016/j.marpolbul.2016.01.004

    Article  Google Scholar 

  7. 7.

    Arctic Monitoring and Assessment Programme (AMAP): Arctic pollution. Presented at the (2011)

  8. 8.

    Arctic Monitoring and Assessment Programme (AMAP): Summary for Policy-makers: Arctic Pollution Issues. Presented at the (2015)

  9. 9.

    Lessard, F., Bussière, B., Côté, J., Benzaazoua, M., Boulanger-Martel, V., Marcoux, L.: Integrated environmental management of pyrrhotite tailings at Raglan Mine: part 2 desulphurized tailings as cover material. J. Clean. Prod. 186, 883–893 (2018). https://doi.org/10.1016/j.jclepro.2018.03.132

    Article  Google Scholar 

  10. 10.

    Kontorovich, A.E., Epov, M.I., Eder, L.V.: Long-term and medium-term scenarios and factors in world energy perspectives for the 21st century. Russ. Geol. Geophys. 55, 534–543 (2014). https://doi.org/10.1016/j.rgg.2014.05.002

    Article  Google Scholar 

  11. 11.

    Li, D., Wu, D., Xu, F., Lai, J., Shao, L.: Literature overview of Chinese research in the field of better coal utilization. J Clean Prod (2018). https://doi.org/10.1016/j.jclepro.2018.02.216

    Article  Google Scholar 

  12. 12.

    Farquharson, D.V., Jaramillo, P., Schivley, G., Klima, K., Carlson, D., Samaras, C.: Beyond global warming potential: a comparative application of climate impact metrics for the life cycle assessment of coal and natural gas based electricity. J. Ind. Ecol. 21, 857–873 (2017). https://doi.org/10.1111/jiec.12475

    Article  Google Scholar 

  13. 13.

    Whitaker, M., Heath, G.A., O’Donoughue, P., Vorum, M.: Life cycle greenhouse gas emissions of coal-fired electricity generation. J. Ind. Ecol. 16, S53–S72 (2012). https://doi.org/10.1111/j.1530-9290.2012.00465.x

    Article  Google Scholar 

  14. 14.

    Yang, Z., Zhang, Y., Liu, L., Wang, X., Zhang, Z.: Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions. Waste Manag. 50, 213–221 (2016). https://doi.org/10.1016/j.wasman.2015.11.011

    Article  Google Scholar 

  15. 15.

    Jianzhong, L., Ruikun, W., Jianfei, X., Junhu, Z., Kefa, C.: Pilot-scale investigation on slurrying, combustion, and slagging characteristics of coal slurry fuel prepared using industrial wasteliquid. Appl. Energy. 115, 309–319 (2014). https://doi.org/10.1016/j.apenergy.2013.11.026

    Article  Google Scholar 

  16. 16.

    Zhou, H., Yang, Q., Zhu, S., Song, Y., Zhang, D.: Life cycle comparison of greenhouse gas emissions and water consumption for coal and oil shale to liquid fuels. Resour. Conserv. Recycl. (2019). https://doi.org/10.1016/j.resconrec.2019.01.031

    Article  Google Scholar 

  17. 17.

    Guo, F., Zhong, Z., Xue, H., Zhong, D.: Migration and distribution of heavy metals during co-combustion of sedum plumbizincicola and coal. Waste Biomass Valoriz. 9, 2203–2210 (2018). https://doi.org/10.1007/s12649-017-9955-4

    Article  Google Scholar 

  18. 18.

    Rohani, V., Takali, S., Gérard, G., Fabry, F., Cauneau, F., Fulcheri, L.: A new plasma electro-burner concept for biomass and waste combustion. Waste Biomass Valoriz. 8, 2791–2805 (2017). https://doi.org/10.1007/s12649-017-9829-9

    Article  Google Scholar 

  19. 19.

    Liu, C., Huang, Y., Dong, L., Duan, L., Xu, L., Wang, Y.: Combustion characteristics and pollutants in the flue gas during shoe manufacturing waste combustion in a 2.5 MWth pilot-scale circulating fluidized bed. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0476-6

    Article  Google Scholar 

  20. 20.

    Vamvuka, D., Sfakiotakis, S.: Thermal behaviour and reactivity of swine sludge and olive by-products during co-pyrolysis and co-combustion. Waste Biomass Valoriz. 10, 1433–1442 (2019). https://doi.org/10.1007/s12649-017-0118-4

    Article  Google Scholar 

  21. 21.

    Carpenter, A.C., Gardner, K.H.: Use of industrial by-products in urban roadway infrastructure: argument for increased industrial ecology. J. Ind. Ecol. 13, 965–977 (2009). https://doi.org/10.1111/j.1530-9290.2009.00175.x

    Article  Google Scholar 

  22. 22.

    Glushkov, D., Paushkina, K., Shabardin, D., Strizhak, P., Gutareva, N.: Municipal solid waste recycling by burning it as part of composite fuel with energy generation. J. Environ. Manage. 231, 896–904 (2019). https://doi.org/10.1016/j.jenvman.2018.10.067

    Article  Google Scholar 

  23. 23.

    Vershinina, K.Y., Shlegel, N.E., Strizhak, P.A.: A comparison of ignition characteristics of slurry fuels prepared using coal processing waste and finely divided coal. J. Energy Inst. 92, 1167–1177 (2019). https://doi.org/10.1016/j.joei.2018.06.001

    Article  Google Scholar 

  24. 24.

    Adiansyah, J.S., Haque, N., Rosano, M., Biswas, W.: Application of a life cycle assessment to compare environmental performance in coal mine tailings management. J. Environ. Manage. 199, 181–191 (2017). https://doi.org/10.1016/j.jenvman.2017.05.050

    Article  Google Scholar 

  25. 25.

    Rigamonti, L., Grosso, M., Biganzoli, L.: Environmental assessment of refuse-derived fuel co-combustion in a coal-fired power plant. J. Ind. Ecol. 16, 748–760 (2012). https://doi.org/10.1111/j.1530-9290.2011.00428.x

    Article  Google Scholar 

  26. 26.

    Dmitrienko, M.A., Strizhak, P.A.: Environmentally and economically efficient utilization of coal processing waste. Sci. Total Environ. 598, 21–27 (2017). https://doi.org/10.1016/j.scitotenv.2017.04.134

    Article  Google Scholar 

  27. 27.

    Bala-Litwiniak, A., Radomiak, H.: Possibility of the utilization of waste glycerol as an addition to wood pellets. Waste and Biomass Valorization. 10, 2193–2199 (2019). https://doi.org/10.1007/s12649-018-0260-7

    Article  Google Scholar 

  28. 28.

    Nyashina, G.S., Kurgankina, M.A., Strizhak, P.A.: Environmental, economic and energetic benefits of using coal and oil processing waste instead of coal to produce the same amount of energy. Energy Convers. Manag. 174, 175–187 (2018). https://doi.org/10.1016/j.enconman.2018.08.048

    Article  Google Scholar 

  29. 29.

    Andreassen, N.: Arctic energy development in Russia—how “sustainability” can fit? Energy Res. Soc. Sci. 16, 78–88 (2016). https://doi.org/10.1016/j.erss.2016.03.015

    Article  Google Scholar 

  30. 30.

    Meylan, F.D., Moreau, V., Erkman, S.: CO2 utilization in the perspective of industrial ecology: an overview. J. CO2 Util. 12, 101–108 (2015). https://doi.org/10.1016/j.jcou.2015.05.003

    Article  Google Scholar 

  31. 31.

    Wang, R., Ma, Q., Ye, X., Li, C., Zhao, Z.: Preparing coal slurry from coking wastewater to achieve resource utilization: slurrying mechanism of coking wastewater–coal slurry. Sci. Total Environ. 650, 1678–1687 (2019). https://doi.org/10.1016/j.scitotenv.2018.09.329

    Article  Google Scholar 

  32. 32.

    Staroń, A., Kowalski, Z., Staroń, P., Banach, M.: Studies on CWL with glycerol for combustion process. Environ. Sci. Pollut. Res. 26, 2835–2844 (2019). https://doi.org/10.1007/s11356-018-3814-0

    Article  Google Scholar 

  33. 33.

    Shin, Y.-J., Shen, Y.-H.: Preparation of coal slurry with organic solvents. Chemosphere 68, 389–393 (2007). https://doi.org/10.1016/j.chemosphere.2006.12.049

    Article  Google Scholar 

  34. 34.

    Staroń, A., Banach, M., Kowalski, Z., Staroń, P.: Impact of waste soot on properties of coal-water suspensions. J. Clean. Prod. 135, 457–467 (2016). https://doi.org/10.1016/j.jclepro.2016.06.127

    Article  Google Scholar 

  35. 35.

    Strizhak, P.A., Vershinina, K.Y.: Maximum combustion temperature for coal-water slurry containing petrochemicals. Energy. 120, 34–46 (2017). https://doi.org/10.1016/j.energy.2016.12.105

    Article  Google Scholar 

  36. 36.

    Wang, H., Liu, S., Wang, X., Shi, Y., Qin, X., Song, C.: Ignition and combustion behaviors of coal slime in air. Energy Fuels 31, 11439–11447 (2017). https://doi.org/10.1021/acs.energyfuels.7b01960

    Article  Google Scholar 

  37. 37.

    Morris, J.: Recycle, bury, or burn wood waste biomass?: LCA answer depends on carbon accounting, emissions controls, displaced fuels, and impact costs. J. Ind. Ecol. 21, 844–856 (2017). https://doi.org/10.1111/jiec.12469

    Article  Google Scholar 

  38. 38.

    Tisserant, A., Pauliuk, S., Merciai, S., Schmidt, J., Fry, J., Wood, R., Tukker, A.: Solid waste and the circular economy: a global analysis of waste treatment and waste footprints. J. Ind. Ecol. 21, 628–640 (2017). https://doi.org/10.1111/jiec.12562

    Article  Google Scholar 

  39. 39.

    Acevedo, B., Barriocanal, C.: Texture and surface chemistry of activated carbons obtained from tyre wastes. Fuel Process. Technol. 134, 275–283 (2015). https://doi.org/10.1016/j.fuproc.2015.02.009

    Article  Google Scholar 

  40. 40.

    Strategiya razvitiya Arkticheskoy zony Rossiyskoy Federatsii i obespecheniya natsional’noy bezopasnosti na period do 2020 goda. [Strategy for the development of the Arctic zone of the Russian Federation and national security for the period until 2020]. Utverzhdena Prezidentom Rossiyskoy Federatsii V.V. Putinym 20 fevralya 2013 g. № Pr-232. (In Russian). https://government.ru/info/18360/

  41. 41.

    Han, S., Chen, H., Long, R., Cui, X.: Peak coal in China: a literature review. Resour. Conserv. Recycl. 129, 293–306 (2018). https://doi.org/10.1016/j.resconrec.2016.08.012

    Article  Google Scholar 

  42. 42.

    Dmitrienko, M.A., Nyashina, G.S., Strizhak, P.A.: Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals. J. Hazard. Mater. 338, 148–159 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.031

    Article  Google Scholar 

  43. 43.

    Kumar, A., Sah, B., Singh, A.R., Deng, Y., He, X., Kumar, P., Bansal, R.C.: A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 69, 596–609 (2017). https://doi.org/10.1016/j.rser.2016.11.191

    Article  Google Scholar 

  44. 44.

    Daood, S.S., Ord, G., Wilkinson, T., Nimmo, W.: Fuel additive technology—NOx reduction, combustion efficiency and fly ash improvement for coal fired power stations. Fuel 134, 293–306 (2014). https://doi.org/10.1016/j.fuel.2014.04.032

    Article  Google Scholar 

  45. 45.

    Wang, Z., Gong, Z., Wang, Z., Fang, P., Han, D.: A TG-MS study on the coupled pyrolysis and combustion of oil sludge. Thermochim. Acta. 663, 137–144 (2018). https://doi.org/10.1016/j.tca.2018.03.019

    Article  Google Scholar 

  46. 46.

    Miller, J.A., Bowman, C.T.: Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sei. 4, 287–338 (1989)

    Article  Google Scholar 

  47. 47.

    Yang, Y., Liu, J., Liu, F., Wang, Z., Zhang, Z.: Comprehensive evolution mechanism of SOx formation during pyrite oxidation. Proc. Combust. Inst. 37, 2809–2819 (2019). https://doi.org/10.1016/j.proci.2018.06.064

    Article  Google Scholar 

  48. 48.

    Zhou, H., Li, Y., Li, N., Qiu, R., Cen, K.: Conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle under oxy-fuel fluidized bed conditions. J. Energy Inst. 92, 351–363 (2019). https://doi.org/10.1016/j.joei.2018.01.001

    Article  Google Scholar 

  49. 49.

    Feng, T., Huo, M., Zhao, X., Wang, T., Xia, X., Ma, C.: Reduction of SO2 to elemental sulfur with H2 and mixed H2/CO gas in an activated carbon bed. Chem. Eng. Res. Des. 121, 191–199 (2017). https://doi.org/10.1016/j.cherd.2017.03.014

    Article  Google Scholar 

  50. 50.

    Liu, G.Q., Liu, Q.C., Wang, X.Q., Meng, F., Ren, S., Ji, Z.P.: Combustion characteristics and kinetics of anthracite blending with pine sawdust. J. Iron Steel Res. Int. 22, 812–817 (2015). https://doi.org/10.1016/S1006-706X(15)30075-3

    Article  Google Scholar 

  51. 51.

    Castro, R.P.V., Medeiros, J.L., Araújo, O.Q.F., Andrade Cruz, M., Ribeiro, G.T., Oliveira, V.R.: Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates. Energy Convers. Manag. 143, 173–187 (2017). https://doi.org/10.1016/j.enconman.2017.03.078

    Article  Google Scholar 

  52. 52.

    Bhui, B., Vairakannu, P.: Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology. J. Environ. Manage. 231, 1241–1256 (2019). https://doi.org/10.1016/j.jenvman.2018.10.092

    Article  Google Scholar 

  53. 53.

    Vershinina, K.Y., Strizhak, P.A.: Ignition of coal suspensions based on water of different quality. Coke Chem. 59, 437–440 (2016). https://doi.org/10.3103/S1068364X16110077

    Article  Google Scholar 

  54. 54.

    Armesto, L., Bahillo, A., Cabanillas, A., Veijonen, K., Otero, J., Plumed, A., Salvador, L.: Co-combustion of coal and olive oil industry residues in fluidised bed. Fuel 82, 993–1000 (2003). https://doi.org/10.1016/S0016-2361(02)00397-6

    Article  Google Scholar 

  55. 55.

    Yanik, J., Duman, G., Karlström, O., Brink, A.: NO and SO2 emissions from combustion of raw and torrefied biomasses and their blends with lignite. J. Environ. Manage. 227, 155–161 (2018). https://doi.org/10.1016/j.jenvman.2018.08.068

    Article  Google Scholar 

  56. 56.

    Zhang, Z., Zeng, Q., Hao, R., He, H., Yang, F., Mao, X., Mao, Y., Zhao, P.: Combustion behavior, emission characteristics of SO2, SO3 and NO, and in situ control of SO2 and NO during the co-combustion of anthracite and dried sawdust sludge. Sci. Total Environ. 646, 716–726 (2019). https://doi.org/10.1016/j.scitotenv.2018.07.286

    Article  Google Scholar 

  57. 57.

    Shahzad, K., Saleem, M., Kazmi, M., Ali, Z., Hussain, S., Akhtar, N.A.: Effect of hydrodynamic conditions on emissions of NOx, SO2, and CO from co-combustion of wheat straw and coal under fast fluidized bed condition. Combust. Sci. Technol. 188, 1303–1318 (2016). https://doi.org/10.1080/00102202.2016.1190344

    Article  Google Scholar 

Download references

Acknowledgments

Research was supported by National Research Tomsk Polytechnic University (Project VIU-ISHFVP-60/2019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Margarita A. Kurgankina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurgankina, M.A., Nyashina, G.S. & Strizhak, P.A. Ecological Assessment of Industrial Waste as a High-Potential Component of Slurry Fuels. Waste Biomass Valor 12, 1659–1676 (2021). https://doi.org/10.1007/s12649-020-01114-1

Download citation

Keywords

  • Industrial ecology
  • Arctic
  • Recycling
  • Anthropogenic emissions
  • Slurry fuels
  • Waste