Identification of Copper-Binding Peptides and Investigation of Functional Properties of Acetes japonicus Proteolysate


In this research, two copper-binding peptides were identified in the proteolysate of Acetes japonicus. Firstly, the examination of the effects of hydrolysis conditions including enzyme type, pH, temperature, enzyme:substrate (E:S) ratio and hydrolysis time on the copper-binding capacity (CBC) was carried out. Secondly, to optimize the hydrolysis, response surface methodology (RSM) was applied via E:S ratio and hydrolysis time for maximizing the CBC of the proteolysate. After that, the amino acid composition and functional properties of the proteolysate was evaluated. Simultaneously, before being tested for CBC, four peptide fractions of 10–30 kDa, 3–10 kDa, 1–3 kDa, and < 1 kDa were recovered from the proteolysate using ultrafiltration. Finally, mass spectrometer / mass spectrometer (MS/MS) was used to determine molecular weight and amino acid sequence of bioactive peptide. The result showed that when using Flavourzyme, pH 6, 60 °C, E:S ratio of 40.33 U/g protein and hydrolysis time of 4.15 h, CBC reached its peak at 2699.72 µgCu2+/g protein. Proteolysate, of which Leu was the major amino acid, the indispensible amino acids comprised of approximately 40% total amino acid content. The proteolysate also exerted great solubility, heat stability, foaming and emulsifying property, oil and water holding capacity (OHC and WHC, respectively). The 1–3 kDa fraction exhibited the highest CBC of 2754.73 ± 91.87 μg Cu2+/g protein, from which two peptides (Asp-Tyr-Met-Leu-Pro-Thr-Asp-Lys-Tyr-Pro-His (1378.6 Da) and Gly-Tyr-Pro-Phe-Asp-Ala-Asp-Ser-Val-Asn-Phe-Pro-Val-His-Gly (1620.7 Da)) were detected. This is the first time that the copper affinity peptides were recovered from the small shrimp that could be utilized as a natural source for copper enhancement.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Desai, V., Kaler, S.G.: Role of copper in human neurological disorders. Am. J. Clin. Nutr. 88, 855S–858S (2008)

    Google Scholar 

  2. 2.

    Wapnir, R.A.: Copper absorption and bioavailability. Am. J. Clin. Nutr. 67, 1054S–1060S (1060S)

    Google Scholar 

  3. 3.

    Harris, E.D.: Minerals in food: Nutrition, Metabolism. Bioactivity. DEStech Publications, USA (2014)

    Google Scholar 

  4. 4.

    Myint, Z.W., Oo, T.H., Thein, K.Z., Tun, A.M., Saeed, H.: Copper deficiency anemia: review article. Ann. Hematol. 97, 1527–1534 (2018)

    Google Scholar 

  5. 5.

    Pham, A.N., Xing, G., Miller, C.J., Waite, T.D.: Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 301, 54–64 (2013)

    Google Scholar 

  6. 6.

    Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J.-F., Margaritis, I.: Dietary copper and human health: current evidence and unresolved issues. J. Trace. Elem. Med. Biol. 35, 107–115 (2016)

    Google Scholar 

  7. 7.

    Brewer, G.J.: The risks of free copper in the body and the development of useful anticopper drugs. Curr. Opin. Clin. Nutr. Metab. Care 11, 727–732 (2008)

    Google Scholar 

  8. 8.

    Crisponi, G., Nurchi, V.M., Fanni, D., Gerosa, C., Nemolato, S., Faa, G.: Copper-related diseases: from chemistry to molecular pathology. Coord. Chem. Rev. 254, 876–889 (2010)

    Google Scholar 

  9. 9.

    Foegeding, E.A.: Food protein functionality-a new model. J. Food Sci. 80, C2670–2677 (2015)

    Google Scholar 

  10. 10.

    Noman, A., Xu, Y., AL-Bukhaiti, W.Q., Abed, S.M., Ali, A.H., Ramadhan, A.H., Xia, W.: Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochem. 67, 19–28 (2018)

    Google Scholar 

  11. 11.

    Thiansilakul, Y., Benjakul, S., Shahidi, F.: Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 103, 1385–1394 (2007)

    Google Scholar 

  12. 12.

    AOAC: AOAC: Official methods of analysis, 15th ed. The association of official analytical chemists, Washington, DC, USA (2000)

  13. 13.

    Folch, J., Lees, M., Stanley, G.H.S.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    Google Scholar 

  14. 14.

    Vo, T.D.L., Pham, K.T., Le, L.T., Nguyen, T.T.H.: Identification of a new calcium-binding peptide from enzymatic proteolysate of Acetes japonicus. J Food Process Pres. 42, e13837 (2018)

    Google Scholar 

  15. 15.

    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  16. 16.

    Nielsen, P.M., Petersen, D., Dambmann, C.: Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66, 642–646 (2001)

    Google Scholar 

  17. 17.

    Kong, B., Xiong, Y.: Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agric. Food Chem. 54, 6059–6068 (2006)

    Google Scholar 

  18. 18.

    Li, X., Luo, Y., Shen, H., You, J.: Antioxidant activities and functional properties of grass carp (Ctenopharyngodon idellus) protein hydrolysates. J. Sci. Food Agric. 92, 292–298 (2012)

    Google Scholar 

  19. 19.

    Putra, S.N.K.M., Ishak, N.H., Sarbon, N.M.: Preparation and characterization of physicochemical properties of golden apple snail (Pomacea canaliculata) protein hydrolysate as affected by different proteases. Biocatal. Agric. Biotechnol. 13, 123–128 (2018)

    Google Scholar 

  20. 20.

    Gbogouri, G.A., Linder, M., Fanni, J., Parmentier, M.: Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. 69, 615–622 (2004)

    Google Scholar 

  21. 21.

    Castro, R.J.S.D., Sato, H.H.: A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities. Biocatal. Agric. Biotechnol. 4, 55–62 (2015)

    Google Scholar 

  22. 22.

    He, R., Girgih, A.T., Malomo, S.A., Jud, X., Aluko, R.E.: Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Funct. Foods 5, 219–227 (2013)

    Google Scholar 

  23. 23.

    Kozlowski, H., Bal, W., Marcin, D., Kowalik-Jankowska, T.: Specific structure–stability relations in metallopeptides. Coord. Chem. Rev. 184, 319–346 (1999)

    Google Scholar 

  24. 24.

    Shu, G., Zhang, B., Zhang, Q., Wan, H., Li, H.: Effect of temperature, pH, Enzyme to substrate ratio, substrate concentration and time on the antioxidative activity of hydrolysates from goat milk casein by alcalase acta universitatis cibiniensis series E. Food Technol. 20, 29–38 (2017)

    Google Scholar 

  25. 25.

    DeLong, J.P., Gibert, J.P., Luhring, T.M., Bachman, G., Reed, B., Neyer, A., Montooth, K.L.: The combined effects of reactant kinetics and enzyme stability explain the temperature dependence of metabolic rates. Ecol. Evol. 7, 3940–3950 (2017)

    Google Scholar 

  26. 26.

    Kang, P.Y., Ishak, N.H., Sarbon, N.M.: Optimization of enzymatic hydrolysis of shortfn scad (Decapterus macrosoma) myofbrillar protein with antioxidant effect using alcalase. Int. Food Res. J. 25, 1808–1817 (2018)

    Google Scholar 

  27. 27.

    Chen, D., Mu, X., Huang, H., Nie, R., Liu, Z., Zeng, M.: Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. J. Funct. Foods 6, 575–584 (2014)

    Google Scholar 

  28. 28.

    Liu, Q., Kong, B., Xiong, Y.L., Xia, X.: Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 118, 403–410 (2010)

    Google Scholar 

  29. 29.

    Merz, M., Ewert, J., Baur, C., Appel, D., Blank, I., Stressler, T., Fischer, L.: Wheat gluten hydrolysis using isolated Flavourzyme peptidases: product inhibition and determination of synergistic effects using response surface methodology. J. Mol. Catal. B Enzym. 122, 218–226 (2015)

    Google Scholar 

  30. 30.

    Bal, W., Chmurny, G.N., Hilton, B.D., Sadler, P.J., Tucker, A.: Axial hydrophobic fence in highly-stable ni(II) complex of des-angiotensinogen N-terminal peptide. J. Am. Chem. Soc. 118, 4727–4728 (1996)

    Google Scholar 

  31. 31.

    Łodyga-Chruscinska, E.: Tetrazole peptides as copper(II) ion chelators. Coord. Chem. Rev 255, 1824–1833 (2011)

    Google Scholar 

  32. 32.

    Sóvágó, I., Kállay, C., Várnagy, K.: Peptides as complexing agents: factors influencing the structure and thermodynamic stability of peptide complexes. Coord. Chem. Rev. 256, 2225–2233 (2012)

    Google Scholar 

  33. 33.

    Radomska B, Sovago l, Kiss T: Tyrosinate and Lysinate as Bridging Residues in Copper (II) Dipeptide Complexe. 1, 289–292 (1990)

  34. 34.

    Mendola, D.L., Magrì, A., Santoro, A.M., Nicoletti, V.G., Rizzarelli, E.: Copper(II) interaction with peptide fragments of histidine–proline-rich glycoprotein: speciation, stability and binding details. J. Inorg. Biochem. 111, 59–69 (2012)

    Google Scholar 

  35. 35.

    Kristinsson, H.G., Rasco, B.A.: Biochemical And Functional Properties Of Atlantic Salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agric. Food Chem. 48, 657–666 (2000)

    Google Scholar 

  36. 36.

    Ktari, N., Jridi, M., Bkhairia, I., Sayari, N., Salah, R.B., Nasri, M.: Functionalities and antioxidant properties of protein hydrolysates from muscle of zebra blenny (Salaria basilisca) obtained with different crude protease extracts. Food Res. Int. 49, 747–756 (2012)

    Google Scholar 

  37. 37.

    Zayas, J.F.: Functionality of proteins in food. Springer, Berlin, Heidelberg, Germany (1997)

    Google Scholar 

  38. 38.

    Nurdiani, R., Dissanayake, M., Street, W.E., Donkor, O.N., Singh, T.K., Vasiljevic, T.: In vitro study of selected physiological and physicochemical properties of fish protein hydrolysates from 4 Australian fish species. Int. Food Res. J. 23, 2029–2040 (2016)

    Google Scholar 

  39. 39.

    Intarasirisawat, R., Benjakul, S., Visessanguan, W., Wu, J.: Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chem. 135, 3039–3048 (2012)

    Google Scholar 

  40. 40.

    Kitabatake, N., Doi, E.: Surface tension and foaming of protein solutions. J. Food Sci. 47, 1218–1221 (1982)

    Google Scholar 

  41. 41.

    Naqash, S.Y., Nazeer, R.A.: Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. J. Food Sci. Technol. 50, 972–978 (2013)

    Google Scholar 

  42. 42.

    Li, Z., Wang, B., Chi, C., Gong, Y., Luo, H., Ding, G.: Influence of average molecular weight on antioxidant and functional properties of cartilage collagen hydrolysates from Sphyrna lewini, Dasyatis akjei and Raja porosa. Food Res. Int. 51, 283–293 (2013)

    Google Scholar 

  43. 43.

    Pacheco-Aguilar, R., Mazorra-Manzano, M.A., Ramírez-Suárez, J.C.: Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chem. 109, 782–789 (2008)

    Google Scholar 

  44. 44.

    Latorres, J.M., Rios, D.G., Saggiomo, G., Wasielesky Jr., W., Prentice-Hernandez, C.: Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J. Food Sci. Technol. 55, 721–729 (2018)

    Google Scholar 

  45. 45.

    Santos, S.D.A.D., Martins, V.G., Salas-Mellado, M., Prentice, C.: Evaluation of Functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food Bioprocess Technol. 4, 1399–1406 (2011)

    Google Scholar 

  46. 46.

    Cumby, N., Zhong, Y., Naczk, M., Shahidi, F.: Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem. 109, 144–148 (2008)

    Google Scholar 

  47. 47.

    Foh, M.B.K., Kamara, M.T., Amadou, I., Foh, B.M., Wenshui, X.: Chemical and physicochemical properties of tilapia (Oreochromis niloticus) fish protein hydrolysate and concentrate. Int. J. Biol. Chem. 5, 21–36 (2011)

    Google Scholar 

  48. 48.

    Matera-Witkiewicz, A., Jolanta, J.B., S´wiatek-Kozłowska Pratesi, A., Ginanneschi, M., Messori, L.: Short-chain oligopeptides with copper(II) binding properties: the impact of specific structural modifications on the copper(II) coordination abilities. J. Inorg. Biochem. 103, 678–688 (2009)

    Google Scholar 

Download references


This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106-NN.02-2016.62.

Author information



Corresponding author

Correspondence to Tam D. L. Vo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vo, T.D.L., Pham, K.T. & Doan, K.T. Identification of Copper-Binding Peptides and Investigation of Functional Properties of Acetes japonicus Proteolysate. Waste Biomass Valor 12, 1565–1579 (2021).

Download citation


  • Acetes japonicus
  • Copper-binding capacity
  • Copper-binding peptide
  • Enzymatic hydrolysis
  • Functional property